
The Design and Architecture of

MAQAOAdvisor: A Live Tuning Guide

Lamia Djoudi, Jose Noudohouenou, and William Jalby

Université de Versailles, France
lamia.djoudi@prism.uvsq.fr

Abstract. Program performance is tightly linked to the assembly code,
this is even more emphasized on EPIC architectures. Assessing precisely
quality of compiled code is essential to deliver high performance. The
most important step is to build a comprehensive summary for end-user
and extract manageable information. In this paper, we present our first
prototype called MAQAOAdvisor, a key MAQAO(Modular Assembly
Quality Optimizer) module that drives the optimization process through
assembly code analysis and performance evaluation. It performs compre-
hensive profiling, hot-loop and hot-spot detection, fast evaluation and
guides local optimizations. An originality of MAQAOAdvisor is to de-
port part of optimizations from the driver to a post-compiler evaluation
stage. It is based on static analysis and dynamic profile of assembly code.
It feeds information back to help end-user detect and understand per-
formance problems. It proposes optimization recommendations to guide
a user to perform the best transformations to get the best performance.

1 Introduction

The quest for performance leads to an ever increasing processor complexity. Sim-
ilarly compilers are following the same trend with deeper optimization chains
involving numerous sets of techniques. As a result code performance is becom-
ing more and more complex to guarantee, it is sensitive to butterfly effects and
difficult to assess without extensive tuning and experiments. The Three funda-
mental points for code optimization are to detect, understand and fix potential
performance problems. Nowadays this issue is mostly tackled by using hardware
counters and dynamic profiling. An array of tools is used to handle these three
stages of performance tuning. Consequently, tuning is a time consuming task,
burdensome with a poor productivity. Therefore, a modern approach is much
needed, to address the complexity of the task in order to support the multidi-
mensional aspect of performance and complemented existing methods.

We propose an approach which allows us to find the best orientation to guide
a user to perform the best transformations to get the best performance. Under-
standing of how and why the compiler bottleneck occurs, through the feed-back
of more information, helps us to execute the code much faster.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 42–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 43

Source
File

Assembly
Expert System ExecutionCompilerDriver

//
n timesi times

//

Fig. 1. Adding a stage is a way to cut through the cost of evaluation (by preventing
useless execution) as well as to limit the number of evaluations (by preventing the
iterative process to apply useless optimizations)

The novelty of our approach is:

1-The optimization part: Which is transferred from the driver to a post-compiler
evaluation stage. Being after the compilation phase allows us a precise diagnostic
of compiler optimization successes and/or failures, or if due to some obscure com-
piler decision, the resulting code contains under-performing patterns. Assembly
level is the natural place to observe performance, because it is close enough to
the hardware and it is possible to check the job done by the compiler. The idea
is to enrich the performance ecosystem with a new actor in a collaborative way
with the compiler.

2-The assembly code analysis: Our approach gives the first decision about the
code quality and which transformation should be applied to improve the quality
of assembly code and by consequence it’s performance. The use of both static
analysis and dynamic profiling within a single framework seems to provide a
great amount of flexibility for designers to try out new optimization patterns. By
combining static and dynamic analysis, we centralize all low level performance
and build correlations.

3-The modification of iterative compilation process: As depicted in Figure 1,
our system includes an extra stage between the compiler and the execution.
Our approach is located between a model-driven optimization and with ma-
chine learning optimization without training. The advantage of this method is
to have less N executions than the original iterative compilation so, we speed-up
the execution time of the search engine. The driver keeps track of the different
transformations to apply next. It reads a list of transformations that it needs
to examine together with the range of their parameters. With the original ap-
proach, we have only the feedback with the execution time or a few hardware
counters. In our approach, we can have more detailed information on the assem-
bly code with an expert system which is in charge of collecting information from
an inner-view perspective in contrast with execution time or hardware counters
which provide an outer-view. Furthermore, the feed-back provided to the com-
piler is richer than simple raw cycle counts. This feed-back contains the set of
pre-selected transformations than the expert system supposed to be relevant.

In this paper, we present our first prototype called MAQAOAdvisor which is
used to provide a live tuning guide capable of improving performance and/or code



44 L. Djoudi, J. Noudohouenou, and W. Jalby

quality that is not caught by existing tools. It aims to simplify the understanding
of the compiler optimizations. To answer the question: is it possible to learn a
decision rule that select the parameters involved in loop (application) optimiza-
tion efficiency ?. We build a summary that defines an abstract representation of
loops(application) in order to capture the parameters influencing performance.

MAQAOAdvisor advocates a new approach which can be combined with tra-
ditional iterative compilation. This module is characterized by a finer granularity
and a richer feed-back. It alleviates the cost of iterative compilation and enlarges
the spectrum of candidate codes for optimization.

MAQAOAdvisor, a key MAQAO module drives the optimization process
through assembly code analysis and performance evaluation. It is fully imple-
mented in MAQAO (information is presented to the user in a hierarchical manner
in a GUI application) MAQAO[1] is a tool which allows the analysis, the ma-
nipulation and the optimization of assembly code generated by the compiler.
MAQAO tries to identify the optimizations done (or not) by the compiler. De-
veloping MAQAOAdvisor as an expert system seems to be a suitable answer as
the other generic methods that are not adapted to the highly specific problem
of code optimization. It implements a set of rules to help end-user to detect and
understand performance problems and make optimization recommendations to
guide a user to perform the best transformations to get the best performance.

This paper is organized as follows: Section 2 details MAQAOAdvisor overall
design. Section 3 illustrates MAQAOAdvisor outputs. Section 4 details the guided
optimization. Section 5 presents related work. And we conclude in Section 6.

2 Overall Design of MAQAOAdvisor

Gathering data and statistics is necessary for a performance tool, but it remains
only a preliminary stage. The most important step is to build a comprehen-
sive summary for end-user and extract manageable information. MAQAOAd-
visor acts as an expert system to drive user attention within the performance
landscape. Providing an expert system to help the user to deal with complex ar-
chitecture was done by CRAY’s AutoTasking Expert [2]. It was focused on par-
allelization issue and was neither as extensible nor as sophisticated as MAQAO’s
performance module. MAQAOAdvisor is built over a set of rules and metrics:

2.1 Performance Rules

Relying on static as well as dynamic information, MAQAOAdvisor implements a
set of rules to help end-user to detect and understand performance problem. All
rules are written with the support of MAQAO API which allows manipulating
MAQAO internal program representation and quickly writing compact rules.
Rules can be sorted in three categories:

Transformations Rules: Once assembly code parsing data are stored, the
application of the transformations rules will format and gather them according
to some conditions in a data table. We detailed four transformations rules:



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 45

Issue cost per iteration, jointly with cycle cost, this metric allows to evaluate
the cost of data dependences for the loop. A large gap induced by data depen-
dency hints that the loop should be unrolled more aggressively or targeted by
other techniques to increase the available parallelism.

Cycle cost per iteration, is expressed as a function of the number of iterations,
for non-pipelined loop it is simply in the form of: a×N where N is the number
of iterations. This static cycle evaluation is a reference point to estimate the
effectiveness of dynamic performance.

Theoretical cycle bounds per iteration, estimate the data dependency weight
in the critical path. This metric[3] indicates if the loop is computationally or
memory-wise bound. Knowing whether a loop is computationally or memory-
wise bound is a powerful indicator of the kind of optimization techniques to use.
Typically computationally bound loops imply that lots of cycles are available to
tolerate memory latency problems.

Pipeline loop, where the cost function is: a × N + b. N being the number of
iterations, a the cost per iteration and b the filling-up/draining pipeline cost.

Deduction Rules: From the data table of transformation rules, other rules are
deduced to help the end-user to (1) detect and understand the performance prob-
lem, (2) search effective optimizations, (3) understand optimization failures and
obscure compiler decision and to propose code transformations. The deduction
rules can be sorted in three categories:

High Level Rules, add semantic to assembly code loop structures. Based on
heuristic they are able to compute unrolling factor, degree of versioning, inlin-
ing, presence of tail code and report suspicious pipeline depth. These rules also
evaluate cost of data dependencies, compute the gap with bound of optimality
or hint for vectorization opportunities. Some rules are also dedicated to estimate
the purpose of loop versioning. The main cost of loop versioning is the intro-
duction of (a limited) decision tree overhead to select the relevant version, and
code size expansion. Several optimizations bring an improvement large enough
to overcome this additional cost, but when the gain is questionable, versioning
should be turned off.

Code Pattern Rules, are dedicated to rules based on known bad code patterns.
For instance on Itanium 2, in some cases the couple of setf/getf instructions
are used to convert values from the general purpose to the floating point reg-
ister file. These conversions are costly and in some cases available. Therefore it
is valuable to report presence of such patterns. Additionally some rules based
on pattern matching evaluate if loops are performing memcpy or memset. With
MAQAOPROFILE, we can have the number of iterations. Also, in MAQAO, we
have a summary about some specific functions. For example, the insert of memcpy
is interesting when the number of iterations is greater than 1000. In this case, a
message is reported advising to modify the source code and insert a library call.
Additionally spill/fill operations are detected, as well as memory operations
prone to bank conflicts. On the source level, MAQAOAdvisor also detects if a
code is badly written and proposes some high level transformations.



46 L. Djoudi, J. Noudohouenou, and W. Jalby

Low Level Rules, address performance problems due to some architecture spec-
ifications. For instance in Itanium architecture, it can be: branch buffer saturation
with 1 cycle long loop body (i.e. one branch to process every cycle). Hardware
can not sustains the branch throughput and this leads to some extra stall cycles
of the pipeline. Other architecture specific problems like register pressure, or
lack of prefetch instruction in a loop with memory operations, and so on.

Additional Rules: MAQAOAdvisor is a library of high level rules which can be
extended according to user needs. Users can easily extend the MAQAOAdvisor
by writing their own rules.

2.2 Hierarchical Reporting Approach

The needs of the end-user differ, depending on which level, the decision is going
to be made: is it to chose between two compilers? To select different compilation
flags for the whole application? To tune specifically a given loop? Being aware
of this, MAQAOAdvisor organizes information hierarchically. Each level of the
hierarchy is suitable for a given level of decision to be taken: complete loop
characterization, loop performance analysis, function or whole code analysis.

At the first level, the instructions are coalesced per family (e.g. integer arith-
metics, load instructions) and counted on a per basic block basis.

The second level, which is already an abstraction layer, only reports loops
where some important performance features are detected, thus filters out a large
amount of non-essential data. Additionally results are reported in a user-friendly
way. This level summarizes the tables of:

(i) selected instruction counts and built-in metrics are displayed which require
some knowledge to be interpreted but they represent the exact and complete
input of what MAQAO is going to process in the upper stages. However the goal
is to detail instructions that have been determined as being of special interest.

(ii) instruction count enriched by built-in metrics : Cycle cost per iteration, is-
sue cost per iteration and theoretical cycle bounds per iteration. Together counts
and metrics are exploited by MAQAOAdvisor rules which process results gath-
ered during application execution (instrumentation, hardware counters, cycle
counts).

(iii) versioning summary for each hot loop. The idea is to perform a study of
different versions based on the number of iterations, to decide which is the best
version for each interval of iterations, to classify the versions as function of the
number of iterations, and choose for each interval of iterations the best one in
order to improve parallelism in the original code or in the new optimized code
(very interesting to improve the compositional versioning[4]).

The third and forth level, respectively, for each routine and the whole code, a
report counting the number of detected performance issues. Reading these tables
is quick and was designed to facilitate comparison.

The fifth level summarizes different optimizations. When MAQAOAdvisor
orients user to generate different versions of each hot loop, MAQAO has the



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 47

possibility to perform a global study (static analysis, profiling) for all versions
at the same time. This automatic process is the ”mode project” in MAQAO.

The sixth level, gives a comparison between different transformations, i.e. for
the same code, compiled with different compiler flags; it is possible to do a
paired comparison (graphical or tabular). One can perform this comparison for
each level (1 to 4) or generate a comparison report.

The seventh level, performs code comparison, i.e. for the same code, compiled
with different compilers; here also it is possible to do a paired comparison.

3 MAQAOAdvisor Outputs

Based on the static and dynamic results at all levels, MAQAOAdvisor sorts
functions, loops and projects by their respective weight.

3.1 MAQAOAdvisor Modes

MAQAOAdvisor results are displayed in the MAQAO interface or in a report
by using the batch mode. MAQAOAdvisor rules and those written by users, can
be applied automatically to a large set of files in batch or interactive mode.

3.2 Static Analysis Results

As an analyzer, MAQAO’s static module extracts the entire code structure.
The structure is expressed through a set of graphs. These graphs are simple yet
powerful to analyze a code. Several types of static analysis are also displayed
in MAQAOAdvisor. It provides a diagnosis of selected functions, loops or basic
blocks like the number of instructions and the information about inner loops.

Call Graph (CG): By selecting one function in CG, MAQAOAdvisor gives all
its loops static/dynamic information.

Control Flow Graph (CFG): Represents the predecessor/successor relation
among basic blocks and facilitates to display MAQAOAdvisor results for one
selected loop (see Figure 2 (a)).

Data Dependency Graph (DDG): Computing the DDG is a key issue to
(1) determine critical path latency in a basic block, (2) perform instructions
re-scheduling or any code manipulation technique, (3) allow an accurate under-
standing of dynamic performance hazards, (4) determine the shortest depen-
dency that corresponds to the overlapping bottleneck (see Figure 2 (b)).

Versioning: If the user chooses one loop and click on versioning button, MAQAO
provides a new window with a summary of the versions of this loop generated
by the compiler. If he had performed an instrumentation before, and he clicks
on graph versioning, MAQAOAdvisor provides the distribution of loop iteration
count for each version. This information helps us to decide which optimization
and version is the best. At this level, MAQAOAdvisor can also give a guiding
report to do better optimization.



48 L. Djoudi, J. Noudohouenou, and W. Jalby

(a) MAQAOAdvisor displays analysis. (b) Data Dependence graph

Fig. 2. SPECFP 2000 benchmark. (a) 178.galgel: close inspection of the loop loop
b1 20. In front of each loop of the source code, i© gives access to the information
computed by the MAQAOAdvisor concerning this loop. (b) 187.facerec: DDG of hot
loop in gaborRoutine. User can choose RAW, RAW, WAR, WAW or intra dependence.
It can also visualize them at the same time.

Static Statistics: are the representation of transformations rules detailed in
section 2.1 and they can be displayed in the MAQAO interface.

3.3 Dynamic Analysis Results

MAQAO proceeds to code instrumentation automatically[5]. It measures the real
application behavior with minimal disturbance. An interesting side effect of our
instrumentation is its very low run-time overhead. Profiling information is used
to build an execution summary, they can be transparently accessed by end-user
or used by MAQAOAdvisor.

3.4 Combining Static/Dynamic Analysis

Example of static/dynamic results:

Prefetch impact: By applying prefetch transformation rules, MAQAOAdvisor
detects if a loop containing load or store instructions does not contain prefetch.
It warns and advocates for first checking the source code (to consider if data
streams are manipulated) and if necessary to use prefetch intrinsics. Intrinsics
force the compiler to generate prefetch instructions. This prefetch warning is not
emitted in the case of loop tail code, because loop tail codes have only a limited
number of iterations. In such a case, the lack of prefetch instruction makes sense.

Value Profiling Results: Time profiling is of limited help for such a fine granular-
ity, but value profiling leads to numerous optimizations. For instance, it is the
key metric for code specialization. Additionally, extracting some characteristics
of address streams is useful to prevent bank conflicts, aliasing problems or to
detect the prefetch distances. Prefetch distances could theoretically be computed



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 49

off-line with an assembly code analysis. However, it remains easier and safer to
rely on dynamic traces, since for instance on Itanium architecture some opti-
mizations allow a single prefetch instruction to retrieve several data streams.

Summary Analysis: By comparing static and dynamic analysis, MAQAOAdvisor
detects the value undecidable by a pure static scheme and gives more information
to take the best decision.

4 Guided Optimization

MAQAOAdvisor helps end-user to navigate through his code and isolate the
particularly important or suspicious pieces of code. For these isolated pieces
which are the hot loops, MAQAOAdvisor provides as many guidances as possible
to help the decision making process. This ”guided-profile” allows to understand
the compiler optimizations and guides to improve code quality and performance.
As detailed in Figure 3, MAQAOAdvisor is designed as a set of interlinked levels
each of them being loosely coupled to the others. User can take decisions at the
end of each level. The best decision is taken at the end of the process.

4.1 Automatic Hot Loops Selection

In this stage, we must find the hot loops to be optimized. MAQAOPROFILE[5]
allows us to give a precise weight to all executed loops, therefore underscoring

Fig. 3. MAQAOAdvisor Process



50 L. Djoudi, J. Noudohouenou, and W. Jalby

hotspots. Correlating this information provides the relevant metrics: (1) Identi-
fying the hotpath at run-time which passes through the whole program where
the application spends the most of its time is a key for understanding applica-
tion behavior. (2) Monitoring trip count is very rewarding, by default most of
compiler optimizations target asymptotic performance. Knowing that a loop is
subjected to a limited number of iterations allows us to choose the optimizations
that characterized by a cold-start cost.

4.2 First Decisions

Based on static analysis, MAQAOAdvisor takes first deductions of compiler op-
timizations and proposes to:

(i) Add ”pragma” to avoid (1) the register pressure in order to avoid the spill/fill,
(2) the check instructions (that mean compiler had take a bad optimizations),
(3) and to inform the user that lot of calls can decrease performance.
(ii) Improve code quality in order to improve performance. Code quality de-
pends of the first ratio R1 (issue/bound). It evaluates the matching between
static bounds[3] and observed performance. If it is equal to one, then the func-
tion/loop is removed from the list of optimization candidates. Otherwise, candi-
dates are evaluated according to several factors: value profiling is used to detect
stability.

If we have just one version with R1 ≤ 1.2 and there is no problem of spill
/fill, check instructions and functions calls, MAQAOAdvisor decides that is the
best one and the process can be stopped here.

If R1 ≥ 1.3, we generate the first guided optimization. It combines the static
and dynamic analysis of the original version of each hot loop. Then it allows
user to apply the first optimization for the hot loops in source or assembly
level to improve code quality and the performance. For example, it can propose
optimization on source level, like software pipelining, unrolling, add prefetch.

At this level, applying different transformations for several hot loops in as-
sembly or source level, implies the generation of several versions of code. The
analysis of these versions allows to find the best version or what kind of trans-
formations user must take, to have the best performance at the second level of
the MAQAOAdvisor. It is possible that the compiler may not improve the code
quality, so MAQAOAdvisor orients user to the second decisions.

4.3 Second Decisions

Once at this level, we are sure that we can improve the performance more than
the previous level. To find the trade-off between quality and performance it is
interesting to calculate the second ratio R2.

R2 = c2(N)
c1(N) where: c2(N) = number of cycles executed for N iterations.

c1(N) = A1.N + B1, where A1 is the static cycles of the body, B1 is static
cycles spent in overheads and N is the number of iterations of the loop.



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 51

If the compiler unrolls the original loop and generates a remainder loop, the
formula of c1 is: c1(N) = A1.N+B1+a1.(N mod UF )+b1 where a1 and b1 are the
parameters of the loop corresponding to remainder iterations and (N mod UF )
is the remainder iterations and UF is the unrolling factor. This ratio answers
the question: Does the static code represent a good dynamic behavior?

To take a decision to what we do, MAQAOAdvisor combines the information
like R1 and R2 values of one or more versions for each hot loop:

Simple Optimizations decisions: MAQAOAdvisor follows this path for the
good R2 value (R2 ≤ 3) and decides to guide user to:

Combining best versions in the same source code, where R1 ≤ 1.2. It is a high
level optimization. To achieve a trade-off between code quality and performance,
MAQAOAdvisor combines for each hot loop and their best versions: (1) the un-
rolling factors, (2) the loop and code size, (3) R1 and R2. All this process is auto-
matic. This information is given to a solver that finds the trade-off. Rescheduling,
where R1 ≥ 1.2. A generation of the DDG of the loop can help us to reschedule
the assembly instructions in order to improve the code quality. We choose the
version that corresponds to the small R2.

Compositional loop specialization, we can also apply a low level optimization.
It’s indepent of the R2 value and it can complete and give more performance than
the two first optimizations. Knowing the number of iterations, this technique[4]
can generate and combine sequentially several versions at the assembly level.
We can get best performance with this technique because we improve the best
versions using the MAQAOAdvisor decisions.

Complex Optimizations decisions: If we have a bad R2 value (R2 ≥ 3),
MAQAOAdvisor guides user to use hardware counters. An interesting advantage,
the hardware counters are implemented in MAQAO. Executing a simple script
in MAQAO, MAQAOAdvisor combines the hardware counters and MAQAO
results to guide user to take a decision. For example to solve the cache misses,
MAQAOAdvisor can propose one of the decisions:

Memory reuse, by modifying the stride of the loop or aggregating the data.
Optimization cache, taking a copy of data or a blocking cache decrease the

TLB.
Recovery of Data access latencies, by adding a pragma in source code or mod-

ify the prefetch distance in assembly code. This modification is still in progress
in the compositional approach implemented in MAQAO.

4.4 Optimization Results

In this section, we evaluate our proposed technique. We consider three bench-
marks: CX3D application, a JACOBI code, and a benchmark from the
SPECFP2000.

Experiments were run on a BULL Itanium 2 Novascale system, 1.6GHz, 3MB
of L3. On the software side, codes were compiled using Intel ICC/IFORT 9.1.



52 L. Djoudi, J. Noudohouenou, and W. Jalby

CX3D: CX3D is an application used to simulate Czochralski crystal growth a
method applied in the silicon-wafer production. It covers the convection processes
occurring in a rotating cylindrical crucible filled with liquid melt.

Based on hardware counters technique, we count the cycles, instructions and
nop retired as well as back end bubble all stall cycles, we remark that back end
bubble all stall cycles are the most important (more than 50%). To know the
reason of this stall, we must analyze the subevents. The BE L1D FPU BUBBLE
dominates (86.21%). To know the reason of this stall, we must observe two
events where BE L1D FPU BUBBLE L1D takes 99.54%. To have more preci-
sion, we observe different sub-events for this event. The cause in this level is
that the compiler had a problem to load integer variables from L1D in one cy-
cles (BE L1D FPU BUBBLE L1D DCURCIR takes 51%). Arriving at this level,
we do not have more precise information and we must take another approach to
understand the problem.

But if we use our process, we are sure that we take less time than trying to
understand the hardware counters results in order to identify the problem and
then give a solution. With our approach, firstly we can just base on static analysis
giving the first diagnostic. Combining static and dynamic analysis, our system
can give a precise diagnostic and a precise solution to improve performance. For
example, for this loop, one of the suggestions is the memory access aliasing. Our
aliasing memory module proves that we have an aliasing problem. After that a
precise solution proposed by our system is ”you must apply an interchange”. The
process is organized as follows: first a fine grain profiling is done to get accurate
hot functions and for the hot functions we give the accurate hot spots. Then
the most time consuming inner loops are optimized according to their static and
dynamic analyses of our method.

1 - MAQAOPROFILE Information:

(i) Hot functions: the time attributed to the highest routine (velo) is 70.12 %.
(ii) Hot loops: to isolate the most time consuming loops. The hot loop which is
at the source line 787. Other loops have been omitted for sake of clarity.

2 - Optimization sequence: Based on MAQAOAdvisor process, we try to im-
prove code quality in order to improve performance. Our approach is applied
to loop id 75. Before applying different transformations and relying only on
the combination of static and dynamic information, MAQAOAdvisor (i) collects
compiler optimization information applied to this loop , (ii) proposes different
solutions (unrolling, prefetching and interchange) for this loop. Generating these
versions and the summary of the static information, the GLPK solver indicates
that the interchange transformation is better. The gain is 60% and R1 becomes
1 (good code quality). To prove our approach, we have also applied profiling
for these transformations. We have remarked that there is a correspondence
between solver solution or proposition and dynamic results. That proves, it is
not necessary to execute different versions in order to find the best execution
time corresponding to the best transformations. But just with the useful static
information, we can find the best transformations.



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 53

(a) Static guided-profile (b) Dynamic guided-profile

Fig. 4. Hot file (relax jacobi), hot loop (2655 source line), selected versions: (a) first
and second ratio. (b) static cycles and dynamic cycles.

(a) Compositional versioning of jacobi (b) Compositional versioning of Applu

Fig. 5. CPU cycles for different compositional versioning: (a) loop 23 (source line) in
relax jacobi, (b) loop 2655 (source line) of 173.applu

JACOBI: Jacobi code solves the Helmholtz equation on a regular mesh, using
an iterative Jacobi method with over-relaxation. The first level of our approach
demonstrates that Jacobi contains one important hot loop (source line 2655).
This level allows us to generate some versions of this loop using pragma. Intro-
ducing all guided-profile important information to the GLPK[10] solver, it finds
a trade-off and decides the version unroll 6 is the best one (see Figure 4 ). For
the best version, we have applied different transformations. See Figure 5(a).

173.APPLU: It is a benchmark from SPECFP2000 which leads to the per-
formance evaluation of the solver for five coupled parabolic/elliptic partial dif-
ferential equations. The same process of jacobi was applied for this benchmark
and the best version is the version unroll 6. Accurate results of compositional
versioning are provided in Figure 5(b).

5 Related Work

Very few tools focus at providing user with transformation code advices for per-
formance tuning. Tools such as foresys [6] or FORGExplorer [7] propose code
analyses as well as code transformations but no techniques to identify the tun-
ing transformation to use. Vtune[12] is mainly a profiling tool. Its usage is so



54 L. Djoudi, J. Noudohouenou, and W. Jalby

widespread that an API gets standardized to describe their access. CAHT[8]
shares the same goal as Vtune: ”discover performance-improvement opportuni-
ties often not considered by a compiler, either due to its conservative approach
or because it is not up-to-date with the latest processor technology”. CAHT
also formalized the search of tuning advices and so builds an easily extensible
system based on case-based reasoning (CBR). The solution proposed by CAHT
is not precise when there are no similar cases because it must ignore some char-
acteristics to provide a solution. We propose to extend the MAQAOAdvisor to
incorporate the case-based reasoning but just for similar case. With each new
case and the use of an expert system, we are sure we will enrich the knowledge
base with very precise cases. In addition to the combination between the CBR
and expert system, we will propose precise solutions.

ATOM [11] and Pin [15] instrument assembly codes (or even binary for Pin)
in a way that when specific instructions are executed, they are caught and user
defined instrumentation routines are executed. While being very useful Atom and
Pin are more oriented toward prospective architecture simulation than code per-
formance analysis. EEL[9] belongs to the same categories of tools. This C++ li-
brary allows editing a binary and adding code fragment on edges of disassembled
application CFG. Therefore it can be used as a foundation for an analysis tool
but does not provide performance analysis by itself. Currently EEL is available
on SPARC processors. Vista [13], is an interesting cross-over between compiler
and performance tool. Plugged with its own compiler, Vista allows to interac-
tively test and configure compilation phases for code fragment. Everything is
done in a very visual way. While being conceptually close to MAQAO, Vista
remains more a compiler project than a performance analyzer.

Shark [14] offers a comprehensive interface for performance problems. Like
MAQAO, it is located at the assembly level for its analyzes, displays source code
as well as profiling information. As most of Apple’s software the GUI is extremely
well designed. However Shark lacks instrumentation and value profiling. Code
structures are not displayed and the Performance Oracle advices are currently
limited to very few messages: alignment, unrolling or altivec (vectorization).
Additionally as most of Apple’s software it is very proprietary and does not offer
open-source scripting language or standard database. Nevertheless it remains
an advanced interface, with an extensive support of dynamic behavior and it
underlines the need to think performance software beyond gprof.

6 Conclusion

MAQAO is a tool that centralizes performance information and merges them
within a representation of the assembly code. MAQAO also provides several
views on the internal representation of an input program that the user can
navigate through. MAQAOAdvisor module drives the optimization process by
providing support through assembly code analysis and performance evaluation.
It explores the possibility to let a user interact with program analysis and opens
new ways of exploring, modifying and optimizing assembly and source code.



The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide 55

Taking advantage of precise profiling information, our system is able to select
the most suitable optimizations among a list defined by the user (Deep Jam,
. . . ) or using directives (unroll, software pipelining, prefetch,. . . ). A trustable
API to drive exactly the sequence of optimizations through the compiler would
be useful to unleash the potential of our (any) feed-back approach.

Our goal is to improve MAQAOAdvisor to a real expert system. The idea is
to present a prototype which is a design expert system for MAQAO incorporat-
ing case-based reasoning. The case-based reasoning is the method in which we
create a knowledge base. If you have a new application, the system searches a
domain dependent case-base for a similar case:

(i) If there is one, the system uses it to propose solutions to improve performance
and/or code quality with minimum user interaction. To do this we must analyze
the application and identify its characteristics and its context.
(ii) When there is no similar case, instead ignoring certain characteristics (the
case of case-based reasoning), we can leave it to the user or an intelligent system.
With each new case and the use of an expert system, we are sure we will en-
rich the knowledge base with very precise cases. In addition to the combination
between the CBR and expert system, we will propose precise solutions.

As a compiler construction tool, our framework can be useful to compare
different compilers. For instance, it is easy to track regressions between two
versions of a compiler or to have an accurate picture of compilation flag impact.

The main goal is to export MAQAO to different VLIW compilers. The im-
plementation of Trimedia architecture is still in progress. The assembly code
generated by Trimedia is very similar to Itanium 2 and we implement an inter-
face in MAQAO in order avoid writing another MAQAO specific to Trimedia.

In the future, MAQAO will include improving optimization module by adding
new optimization techniques, based on powerful mathematical models.

References

1. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.-T., Jalby, W.:
MAQAO: Modular Assembler Quality Analyzer and Optimizer for Itanium 2. In:
Workshop on EPIC, San Jose (2005)

2. Kohn, J., Williams, W.: ATExpert. Journal of Parallel and Distributed Comput-
ing 18(2), 205–222 (1993)

3. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.-T., Jalby, W.:
Exploring Application Performance: a New Tool for a Static/Dynamic Approach.
In: Los Alamos Computer Science Institute Symposium, Santa Fe, NM (2005)

4. Djoudi, L., Acquaviva, J.-T., Barthou, D.: Compositional Approach applied to
Loop Specialization. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 268–279. Springer, Heidelberg (2007)

5. Djoudi, L., Barthou, D., Tomaz, O., Charif-Rubial, A., Acquaviva, J.-T., Jalby, W.:
The Design and Architecture of MAQAOPROFILE: an Instrumentation MAQAO
Module. In: Workshop on EPIC, San Jose (2007)

6. FORESYS, FORtran Engineering SYStem,
http://www.pallas.de/pages/foresys.htm

http://www.pallas.de/pages/foresys.htm


56 L. Djoudi, J. Noudohouenou, and W. Jalby

7. FORGExplorer, http://www.apri.com/
8. Monsifrot, A., Bodin, F.: Computer aided hand tuning (CAHT): applying case-

based reasoning to performance tuning. In: ICS 2001: Proceedings of the 15th
international conference on Supercomputing (2001)

9. Larus, J.R., Schnaar, E.: EEL: Machine-Independent Executable Editing. In: The
ACM SIGPLAN PLDI Conference (appeared, June 1995)

10. http://www.gnu.org/software/glpk

11. Srivastava, A., Eustace, A.: ATOM - A System for Building Customized Program
Analysis Tools. In: PLDI 1994, pp. 196–205 (1994)

12. VTune Performance Analyzer, http://www.intel.com/software/products/vtune
13. Zhao, W., Cai, B., Whalley, D., Bailey, M., van Engelen, R., Yuan, X., Hiser, J.,

Davidson, J., Gallivan, K., Jones, D.: Vista: a system for interactive code improve-
ment. In: Proceedings of the joint conference on Languages, compilers and tools
for embeded systems, pp. 155–164 (2002)

14. http://developer.apple.com/tools/shark optimize.html

15. Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., Karunanidhi, A.: Pin-
pointing Representative Portions of Large Intel Itanium Programs with Dynamic
Instrumentation Micro 37, Portland (2004)

http://www.apri.com/
http://www.gnu.org/software/glpk
http://www.intel.com/software/products/vtune
http://developer.apple.com/tools/shark_optimize.html

	The Design and Architecture of MAQAOAdvisor: A Live Tuning Guide
	Introduction
	Overall Design of MAQAOAdvisor
	Performance Rules
	Hierarchical Reporting Approach

	MAQAOAdvisor Outputs
	MAQAOAdvisor Modes
	Static Analysis Results
	Dynamic Analysis Results
	Combining Static/Dynamic Analysis

	Guided Optimization
	Automatic Hot Loops Selection
	First Decisions
	Second Decisions
	Optimization Results

	Related Work
	Conclusion


