
Quantifying Performance Bottleneck Cost Through
Differential Analysis

Souad Koliaï
Exascale Computing

Research
Versailles, France,

souad.koliai@exascale-computing.eu

Zakaria Bendifallah
Exascale Computing

Research
Versailles, France,

zakaria.bendifallah@exascale-
computing.eu

Mathieu Tribalat
Exascale Computing

Research
Versailles, France,

mathieu.tribalat@exascale-
computing.eu

Cédric Valensi
Exascale Computing

Research
Versailles, France,

cedric.valensi@exascale-
computing.eu

Jean-Thomas Acquaviva
Exascale Computing

Research
Versailles, France,

jean-thomas.acquaviva@exascale-
computing.eu

William Jalby
University of Versailles

Versailles, France,
william.jalby@uvsq.fr

ABSTRACT
Accurate performance analysis is critical for understanding appli-
cation efficiency and then driving software or hardware optimiza-
tions. Although most of static and dynamic performance analy-
sis tools provide useful information, they are not completely sat-
isfactory. Static performance analysis does not provide an accu-
rate view due to the lack of runtime information (eg: cache behav-
ior). On the other hand, profilers, generally mixed with hardware
counters, provide a wide range of performance metrics but lack
the ability to correlate performance informations with the appro-
priate code fragment, data structure or instruction. Finally, cycle
accurate simulators are too complex and too costly to be used rou-
tinely for optimization of real life applications. This paper presents
the Differential Analysis method, an approach designed for sim-
ple and automatic detection of performance bottlenecks. This ap-
proach relies on DECAN, a tool which generates different binary
variants obtained by patching individual or groups of instructions.
The different variants are then measured and compared, allowing to
evaluate the cost of an instruction group and therefore its optimiza-
tion potential benefit. Differential analysis is illustrated by the use
of DECAN on a range of HPC applications to detect performance
bottlenecks.

Categories and Subject Descriptors
D.2.8 [Software Engeneering]: Metrics—performance measures

Keywords
Bottleneck detection, differential analysis, binary rewriting, perfor-
mance evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

1. INTRODUCTION
A critical problem in High Performance Computing is to bridge

the gap between peak and achieved performance. Despite impres-
sive raw performance, the achievable fraction on production com-
puting systems remains a frustration for the application developer.
The performance gap has been acknowledged, and numerous tools
(cf. Section 5) have been developed to bridge it. In fact, one of
the key issues to resolve is not only to find the performance bot-
tlenecks but also to correlate back to the source code, which is the
natural place where the application developer has to insert the op-
timizations. For example, knowing through performance counters
that a loop generates a high number of cache misses is not enough.
First, the loop may contain ten arrays accessed in different ways
and only a few of these accesses are responsible for most of the
cache misses. Second, knowing the number of cache misses is not
enough, quantifying its impact is also critical. It might happen that
most of the cache misses are in fact near hits (apparent latency is
less than 10 cycles) while a few of them have a very high latency.
Therefore these few cache misses have the largest impact on over-
all performance. In fact, this last category of misses is the one to
be optimized in the first place. This leads to the more general no-
tion of potential performance gain for optimization. Let us assume
that routine A consumes 60% of the total execution while routine
B consumes 30% and, at the same time, the maximum potential
performance gain for A is estimated at 10% (resulting in an over-
all performance gain of 6%) while performance gain for routine B
is estimated at 50% (resulting in an overall performance gain of
15%). In such a case it is clear that more effort should be spent on
the optimization of routine B. However, the difficult part is how to
evaluate the potential performance gain.

To answer most of the problems listed above, simulation tools
might seem the best approach. They are accurate and enable not
only bottleneck detection but the correlation of performance issues
with the source code as well. They also give a clear quantification
of performance impact. Unfortunately, such tools do not take into
account all of the system aspects of the target machine such as the
memory configuration and the OS. Furthermore they are slow and
in general not user friendly for an application developer.

To remedy this situation, we developed the DECAN tool, which
relies on differential analysis to identify and quantify performance
bottlenecks. The DECAN principle is very similar to standard de-
bugging techniques where programmers remove statements one af-
ter another to identify the bug. The basic concept is fairly simple:
the original binary is first measured and then several variants, each
of them addressing a potential performance bottleneck, are gener-
ated and measured. By comparing performance measurements of
these variants with the reference timing, we can detect bottlenecks
and assert their performance impact. All of the measurements are
done on the real target machine, taking into account all of the sys-
tem aspects and offering decent analysis time when compared with
simulation. The DECAN tool performs binary level transforma-
tions. It does not consider the arithmetic compliance with the orig-
inal binary, and it makes sure not to change the control flow. Fur-
thermore, the transformation scope of DECAN is at the instruction
level.

1.1 Motivating Example
To illustrate DECAN, let us consider the following piece of code

(extracted from a dense Singular Value Decomposition library):

Algorithm 1 Code example
real ∗ 8 A(N,16), scal, s(16) {Column oriented storage}
DO i = 1,16 (Parallel loop)
DO k= 1, N
A(k, i) = A(k, i)/scal
s(i) = s(i) +A(k, i) ∗A(k, i)

ENDDO
ENDDO

We consider different values of N ranging from 200 up to 1000K.
The target machine is a 4-core Sandy-Bridge architecture (see sec-
tion 4.1). The parallelization of the outermost loop is ideal and
results in a perfect load balance between the cores. The inner-
most loop contains a stride 1 access to an array. It results in a very
good vectorization. The only two potential issues are: 1) the reduc-
tion operation and 2) the division operation which is very costly
on Sandy-Bridge architectures. The division operation can not be
factored out of the innermost loop because the use of a reciprocal
operation followed by a multiply affects numerical properties.

First, DECAN is used to generate two binary variants to detect
for which data range the loop is CPU bound or data access bound:

• LSI_STREAM is a binary variant in which all of the floating-
point (FP) arithmetic operations have been suppressed: only
the data access instructions and the address/loop instructions
have been kept.

• FPI_STREAM is a binary variant in which all of the load /
store operations have been suppressed: only the FP instruc-
tions and the address/loop instructions have been kept.

Measuring LSI_STREAM (resp. FPI_STREAM) enables the
contribution of data access (resp arithmetic) instructions to the over-
all execution time to be evaluated. Figure 1 shows that for values of
N less than 400K the bottleneck is the arithmetic operations while
for N values greater than 400K the bottleneck is the data access.

To investigate the performance impact of reduction and division
operations, two more variants were generated:

• ORIG_NODIV is a binary variant in which only the FP divi-
sion is suppressed.

Figure 1: The upper figure shows the streams analysis with
the variants FPI and LSI. The lower figure shows the elemen-
tary transformations NODIV and NORED. The experiments
are performed on 4 cores

• ORIG_NORED is a binary variant in which the dependencies
between iterations relative to the addition (second statement
of the original loop) are suppressed. This is achieved by in-
serting an XOR (Exclusive OR) instruction which sets to zero
the content of the register where the sum is normally accu-
mulated. Inserting such an instruction automatically breaks
the dependencies between consecutive executions of the ad-
dition instruction.

Figure 1 presents the relative performance gains of these vari-
ants with respect to the original. First, it clearly shows that the
reduction operation induces no performance penalties across the
whole data range (ORIG_NORED performance is identical to the
original). Second, the division operation is very costly (i.e. it is
the main performance bottleneck) for values of N less than 400K
while the division operation cost is hidden by the data access for
larger N values. Therefore, the technique of keeping the division
operation within the loop to increase numerical accuracy had a
performance impact only for smaller N values. A third variant,
ORIG_NORED_NODIV, not shown here, was generated to detect
potential interaction between the division and the reduction opera-
tions. This third variant had exactly the same performance as the
ORIG_NODIV variant.

Similar observations for the impact of the division operation could
have been achieved at the source code level by suppressing it but the
compiler could have then suppressed the original statement from
the generated code. Another approach is to replace the division
with a multiply operation, yet the compiler may still generate an
altered code. Operating with DECAN at the binary level allows
“surgical” operations (with minimal intrusion) to be performed,
keeping the DECAN variant code very close to the original target
code. Now suppressing reductions at the binary level is much more

challenging and in most of the cases would result in a code very
different from the original one.

1.2 Paper Contributions and Organization
The main contribution of this paper is the DECAN tool which

allows at the loop level:

• to quickly and accurately identify key performance limita-
tions

• to quickly assess quantitatively the potential performance gain
associated with removing a given performance bottleneck

• to efficiently correlate performance problems with source code.

These three key features allow the efficiency of overall application
performance tuning process to be improved considerably.
The paper is organized as follows: Section 2 introduces the gen-
eral infrastructure of the DECAN tool as well as the techniques
used to preserve the original program flow. Section 3 discusses
the DECAN framework and describes the instruction transforma-
tion process itself; it also deals with DECAN limitations. Section 4
shows the experimental results on different codes. Section 5 briefly
reviews other tools used in application performance analysis. Fi-
nally the conclusion summarizes and gives an outline of the future
works.

2. DECAN INFRASTRUCTURE
First, we describe the global base environment on top of which

the tool is built. Then, we discuss the program (and loop) control
flow management, which is essential. Indeed, altering the binary
has a major impact on the overall program behavior and special
care has to be taken so that this remains under control. The section
also addresses handling of OpenMP and MPI codes.

2.1 Disassembling and identifying target bi-
nary loops

DECAN relies on a software stack composed of two major com-
ponents:
MADRAS (Multi Architecture Disassembler Rewriter and
Assembler) [16], is a tool to disassemble a file in ELF [12] format
and to return a sequence of structures containing information about
the assembly instructions. MADRAS is also able to patch a file by
inserting function calls or assembly instructions, deleting instruc-
tions or modifying them by changing their opcode or operands.
MAQAO (Modular Assembly Quality Analyzer and Optimizer) [5]
is a framework which performs control and data flow analyses on
the list of instructions provided by MADRAS. The resulting high
level structure is a control flow graph augmented with an accurately
constructed loop hierarchy. Other useful information is provided
via dataflow analysis such as the list of registers used and Use-Def
chains.

The loop hierarchy provided by MAQAO is made available to
the user through a loop topology file. Its form is an intermedi-
ate representation of the chosen part of the program to study. The
representation can be obtained by different kinds of requests. For
example, a request could be the loop hierarchy contained between
two source lines. The file is updated with the desired transforma-
tions and fed into DECAN.

2.2 Control Flow Management
Since DECAN directly modifies loop binaries, the overall pro-

gram behavior might be affected and the program might even crash.
We will distinguish two levels of impact and correspondingly two

levels of control flow: outside of the modified loop (outer control
flow), and within the modified loop (inner control flow). In order to
keep control of the program behavior, we will use two approaches:
first, limit the scope of the loops transformed by DECAN and sec-
ond, restore correct behavior of the application.

Preserving outer control flow: A more general approach (used
in [10]) to tackle this problem is the injection of a recovery loop,
right after the loop modified by DECAN, to restore the correct
states of registers and memory. Basically, the original loop is not
only replaced by the transformed one, but also duplicated; when the
DECANNed loop execution completes, the original version is also
executed just after it. The following steps summarize the mecha-
nism:

• Context saving: All the registers (general purpose, vector,
flags and FPU) are saved
• Monitors activation: Monitoring activation probes are in-

jected
• Modified loop execution: The transformed version of the

loop is executed
• Monitors deactivation: Monitoring deactivation probes are

injected
• Context restore: All the registers are restored
• Original loop execution: The original version of the loop is

executed to recover the correct state of registers and memory

To be entirely correct, this technique also requires that all the stores
are deleted in the transformation process because no corrupted data
should be written.
In addition to this general mechanism, we also use a more specific
technique which is ideal when targeting only one loop at a time.
The principle is to insert an exit sequence right after the execu-
tion of the modified binary loop to make the program stop without
crashing. Exiting right after the execution of the DECAN loop will
prevent any propagation of the “incorrect” data generated by the
DECANNed loop. This technique is implemented through an in-
stance mode: first a given target binary loop is selected and the
program is launched to monitor execution timings of different in-
stances of that target loop. This helps to define an instance number
K of interest (usually it corresponds to the largest execution time
monitored). DECAN patches the binary to let the program run nor-
mally (the original binary code is executed) until the Kth instance
of the target loop is detected. This triggers a branch to the timing
and execution of the modified binary code of the target loop fol-
lowed by an early exit.
For most of the performance studies performed so far using DE-
CAN, the two methods have been able to function correctly.

In its current version, DECAN does not modify loops containing
subroutine calls: for example, a loop containing an MPI Send or
Receive statement will not be modified. This limitation is essen-
tially motivated by the necessity to narrow the propagation of the
“side effects” in the modified binary: a loop modified by DECAN
will in general compute incorrect values and therefore parameters
passed to the subroutine calls will be incorrect. This “no subrou-
tine” rule will suffer two major exceptions: 1) DECAN will still
operate on loops containing calls to intrinsic functions such as ex-
ponential. 2) It also handles the calls to the runtime library such as
the ones inserted by the compiler for managing the OpenMP paral-
lel constructs. It should be noted that the “no subroutine call” lim-
itation can be easily worked around in most of the practical cases
by forcing subroutine inlining.

Preserving inner control flow: First, loops with conditional
branches cannot be transformed in a naive manner because the
paths’ execution ratio and order must be kept unchanged. In or-
der to fulfill this requirement, as a preliminary step (before any
transformation is applied) a detailed static analysis is performed to
compute Use-Def chains involved in the computation of the values
governing the conditional branch. The resulting instruction lists are
put in a blacklist and skipped during the transformation step. Us-
ing such a technique guarantees that the branch behavior will be
identical in the original loop and in the DECANNed loop because
all of the instructions governing the branch have not been modified.

A more subtle issue can arise with instructions such as divide
or square roots. Since “incorrect” numerical values are generated
in the DECANNed loop, exceptions (divide by 0, square root of
a negative number) can be triggered during the execution of the
modified version of the loop. A first partial solution to overcome
this difficulty is simply to mask interruptions during DECANNed
loop execution but this will not be entirely satisfactory because in-
struction timing can be affected. To preserve timing properties,
we insert load instructions from specific stack locations to provide
division/square root operations with operands leading to standard
timing. The overall performance impact of these extra load instruc-
tions will remain limited, first because across iterations, these extra
loads will always access the same stack locations resulting in L1
hits, and second because the cost of these L1 hits is negligible with
respect to the cost of a divide or a square root instruction.

2.3 Information Reporting
As DECAN works on small portions of the program it is essen-

tial for it to perform an accurate performance monitoring followed
by a good source level correlation.

Performance monitoring In order to accurately capture the trans-
formation impact, DECAN places its monitoring probes at the entry
and exits of the loop. For that, it creates basic blocks and redirect
the control flow coming to and going out of the loop to point to
those blocks. Furthermore, several probe types are available:

• Timers by the insertion of RDTSC instructions inside the
blocks.

• Iteration counters by the insertion of incrementable global
variables with MADRAS.

• Hardware counters by the insertion of functions calls to an
API provided by a hardware counter/event monitoring tool.
In the case of DECAN we use Likwid [3] whose API func-
tions serve as triggers to start and stop the counters.

As a result the profiling overhead is greatly minimized.

Correlating back to the source code Relating assembly instruc-
tions to source code level is straightforward when debug informa-
tion (DWARF format) is available. Fortunately, INTEL compilers
provide such an option without altering the quality, and therefore
performance, of the code generated. The option assigns to each in-
struction its corresponding source line and source file path. In most
of the reasonable cases (multidimensional arrays) it is also possible
to get information about the array allocation and therefore enable
connection between instruction groups and arrays.

2.4 Dealing With Parallel Codes
OpenMP codes: Despite the fact that compilers do not fully

follow the code generation structure specified in the OpenMP stan-
dard, they remain close enough to it. This enables us to recognize

the important OpenMP structures (such as parallel loops) and inject
the probes according to their positions. Additionally since the same
loop binary can be executed by different threads, the timing probes
track down the thread ID and generate a separate report for each of
them.

MPI codes: DECAN handles MPI applications in the same man-
ner as it handles sequential ones. The main difference lies in the
results reporting mechanism: in the MPI case a report file is gen-
erated for each process which runs the loop. As mentioned earlier
the “no subroutine call” rule will force DECAN to skip loops con-
taining standard MPI statements such as SEND and RECEIVE.

3. TRANSFORMATION FRAMEWORK
While the previous section dealt with the control flow which

might be seen as the skeleton of the program, the current section
will walk through the intra-block modifications by addressing the
instruction selection and transformation process.

3.1 Overview
The DECAN version presented in this paper targets the x86 in-

struction set with a focus on SSE/AVX instructions (floating-Point
x87 instructions using the stack are not addressed).
DECAN operates on binary loops. It uses a configuration file (called
template) to specify how a binary loop is modified. A template con-
sists of two major components:

• LIST OF INSTRUCTION SUBSETS: a subset of instructions
(extracted from the loop body) on which DECAN will apply
the same specific transformation.

• LIST OF TRANSFORMATIONS: on a given instruction sub-
set, specific transformations can be applied such as simple
deletion, opcode or operand modification and replacement
by other instructions or insertion of new instructions.

For the LSI_STREAM template, the subset of instructions to be
modified consists of all of the FP SSE/AVX instructions. To this
subset, the following transformation process is uniformly applied:
FP instructions involving only registers are simply suppressed while
FP instructions having one operand coming from memory are re-
placed by an equivalent LOAD operation using the same operand
and the same target register.
A DECAN variant is simply a DECAN template applied to one or
several binary loops.
The DECAN operating mode will specify how the DECAN vari-
ants are executed (see section 2.3).
Since one of the issues is to deal with binaries, we will first describe
how to modify binaries.

3.2 Identifying instruction subsets
For each binary loop, DECAN generates a detailed Data Depen-

dency Graph, as well as the list of addresses and SSE/AVX registers
used by the binary.
From that point, DECAN will identify different instruction subsets
which are potential candidates for modification (see Table 1).
The LS SUBSET aggregates all of the read/write instructions and
therefore is not sufficient to distinguish between accesses to differ-
ent arrays. To achieve that goal, LS SUBSET is further subdivided
into groups. A group is essentially a set of read/write operations
which are addressing close by memory locations. For example,
loads to A(I) and A(I+1) are set within the same group. The group
generation is detailed in the next subsection.

SUBSET Definition (instructions listed below are
extracted from target loop body)

LS SUBSET all of the SSE/AVX instructions having one of
its operands operating to/from memory
(either as destination or source)

L SUBSET all of the SSE/AVX instructions having one of
its source operands coming from memory

S SUBSET all of the SSE/AVX instructions having
as a target operand a memory location

FP SUBSET all of the SSE/AVX FP
arithmetic instructions

DIV SUBSET all of the SSE/AVX FP divide instructions
RED SUBSET all of the FP or LOGICAL instructions directly

involved in a reduction
LOC SUBSET all of the instructions involved

in the loop branch control operations

Table 1: Instruction subsets

For each group, we also identify the subsets of instructions modi-
fying the address registers (base and index) defining it.

3.3 Grouping
Analyzing performance globally for all memory instructions is

too coarse.
The goal is to refine the scope of the analysis to something more
meaningful and isolate delinquent instructions. However, discard-
ing a single instruction is misleading in case of hit under miss. For
instance, if A[0] is a miss, then the next access to A, A[1], will
be a hit. Discarding the access to A[0] will simply shift the miss to
A[1]. To pinpoint the bottleneck accurately, an aggregation scheme
to regroup accesses on a cache line basis (A[0]-A[3]) has to be de-
signed.
Furthermore, aggregation eases measurement interpretation. In-
stead of a per cache line analysis, a per data structure analysis is
more relevant for an application developer. The ability to discard
all the accesses to a given data structure at the same time sorts the
different data structures by cost.

Assembly code Groups
0 LOOP:
1 MOVSS (%RDI, %R8, 4), %XMM0 1→ G1
2 ADDSS 12(%RDI, %R8, 4), %XMM0 2→ G1
3 ADDSS 24(%RDI, %R8, 4), %XMM0 3→ G1
4 MOVSS %XMM0, 12(%RDX, %R8, 4) 4→ G2
5 INC %R8
6 CMP %R9, %R8
7 JB LOOP

Table 2: advanced data-flow analysis tracks the symbolic values
of registers. Based on registers value it is then possible to infer
which instructions are targeting the same data structure. Such
instructions are coalesced within groups

Definition: A group is a set of memory accesses to the same data
structure. The structure is usually an array, but it can also be a
memory area used for spill-fill. Two instructions are considered to
belong to the same group if they target an address using the same
base and index register values, the only difference being the offset
(see Table 2 for an example of groups).

As shown in the example depicted in Table 2 grouping analy-
sis requires a partial knowledge of the execution context, which
is evaluated through advanced dataflow analysis. Indeed, for each
used register or memory address, an internal representation is used
to keep its possible formal values.

3.4 DECAN Transformations
On each instruction subset DECAN can perform different modi-

fications (see Table 3).

Transformation Operations performed on all of the
instructions of the target subset

Transformations applicable to any subset
DELETION Delete instruction
N1B Instructions are replaced by a 1 Byte NOP

NMB
Instructions are replaced by a MultiByte
NOP, the size of the NOP in bytes being
equal to the size of the instruction replaced

Transformations applicable to L subset or a group

L_L1_HIT

The memory address of each Load
instruction is replaced by a constant
address (different for each Load) on the
stack. Store instructions are deleted

Transformations applicable to a group

GROUP_PREFETCH

Before the first instruction of a group a
software prefetch instruction is inserted
using the base and index registers
defining the group

Transformations applicable to S subset

S2L

This transformation replaces Store
opcode by an equivalent Load opcode,
the operands being swapped: the source
register (resp. memory target address)
of the Store becomes the source register
(resp. memory source address) for the
Load

Table 3: Subset Transformations

The transformations N1B and NMB are useful because the simple
DELETION “brutally” modifies the front end pipeline behavior:
some instructions being suppressed, the remaining instructions are
issued at a higher rate than in the original code. The use of the
N1B and NMB transformations helps to keep the issue rate of those
instructions close to the issue rate of the original code.
The last three transformations of Table 3 target specific potential
performance problems:

• L_L1_HIT: The net effect of such a transformation is that
across iterations, every load instruction will repeatedly hit
the same location: after an initial miss, the subsequent ac-
cesses will be L1 hits. By comparing the transformed code
timing with the original unchanged code, a quick estimate
of performance penalty due to data access can be obtained.
Using groups, this performance penalty can be precisely at-
tributed to a given array access.

• GROUP_PREFETCH: This transformation assesses the hard-
ware prefetcher efficiency by prefetch distance, thus allow-
ing a precise investigation of memory access behavior.

• S2L: This transformation aims to evaluate the cost of false
sharing or more generally the cost of coherency operations.
Simply suppressing the store will induce a potential reduc-
tion of the cache footprint of the code, while replacing the
Store by a Load keeps the same cache footprint as the origi-
nal code.

The transformations listed can have side effects with potentially
large impact on performance and this defeats our purpose of tight
control of modification impact. For example, deleting a single load
instructions can introduce dependencies between two arithmetic in-
structions which were independent in the original code. To prevent
this, specific instructions (zeroing a register) are inserted: the pro-
cess is exactly similar to the one used for breaking dependencies
within reduction constructs.

More complex transformations (not described here for lack of
space) are also available: one of particular interest targets the stride
associated with a group. In such a case, the stride is replaced by a
smaller one to avoid writing out of array bounds. This transforma-
tion is particularly useful to assess the cost of strides accesses.

3.5 DECAN limitations
First, DECAN has only been developed and tested on X86 pro-

cessors. However, most of the techniques can be easily transferred
to other ISAs and very likely at a much lower cost because the X86
instruction set is one of the largest and hence one of the most com-
plex.

Second, although DECAN overhead can be precisely controlled,
it must be evaluated. When applied to a whole application a sin-
gle DECAN transformation will at most double the execution time
of its target loop due to the replay code inserted after each DE-
CANNed version. If many variants have to be tested, then this
factor would be multiplied by their number.

Third, DECAN can be limited by measurement accuracy. Let
us consider a loop accessing 50 different arrays, all of them be-
ing accessed from the same memory hierarchy level and having
similar data access behavior (same stride, same alignment). Using
L_L1_HIT on one of the arrays will show at best a 2% variation
in execution time, which is within standard measurement margin
errors. Therefore, no conclusions can be reached on any individ-
ual data array access behavior. Fortunately, most of the loops ac-
cess less than 20 arrays, making the example mentioned clearly a
corner-case.

Fourth, in cases of complex control flows with many branches
within the innermost loops, preserving the original flow during ex-
ecution will limit the number of instructions eligible for modifi-
cation by DECAN. Therefore, the potential for exploration will be
reduced. It should be noted that, in practice, this problem was never
encountered for HPC codes. For example, in all of the NAS bench-
marks, all of the hot innermost loops have a simple control flow
that is easily handled by DECAN.

3.6 DECAN Summary
Table 4 illustrates how DECAN operates on a binary. The left-

most column contains the assembly code of an example loop. In-
structions being part of the LS SUBSET are in italic and those of
the FP SUBSET are in bold. The middle and rightmost columns
show the loops resulting from the transformation process. Beyond
the deleted and replaced instructions we can see the change in the

ORIGINAL CODE

MOVSD -0x8(%RDX,%R9,8),%XMM0
INC %R8
MULSD -0x8(%RCX,%RAX,1),%XMM0
MOVSD 0(%RDI,%RDX,1),%XMM1
MOVSD 0x8(%RDI,%RDX,1),%XMM3
SUBSD %XMM0,%XMM1
MOVSD %XMM1,0(%RDI,%RDX,1)
MOVSD -0x8(%RDX,%R9,8),%XMM2
MULSD -0x10(%RCX,%RAX,1),%XMM2
ADD $-0x10,%RCX
SUBSD %XMM2,%XMM3
MOVSD %XMM3,0x8(%RDI,%RDX,1)
ADD $0x10,%RDI
CMP %R10,%R8
JB 402c40

LSI_STREAM FPI_STREAM

MOVSD -0x8(%RDX,%R9,8),%XMM0 XORPS %XMM0,%XMM0
INC %R8 INC %R8
MOVSD -0x8(%RCX,%RAX,1),%XMM0 MULSD %XMM0,%XMM0
MOVSD 0(%RDI,%RDX,1),%XMM1 XORPS %XMM1,%XMM1
MOVSD 0x8(%RDI,%RDX,1),%XMM3 XORPS %XMM3,%XMM3

SUBSD %XMM0,%XMM1
MOVSD %XMM1,0(%RDI,%RDX,1) XORPS %XMM2,%XMM2
MOVSD -0x8(%RDX,%R9,8),%XMM2 MULSD %XMM2,%XMM2
MOVSD -0x10(%RCX,%RAX,1),%XMM2
ADD $-0x10,%RCX ADD $-0x10,%RCX

SUBSD %XMM2,%XMM3
MOVSD %XMM3,0x8(%RDI,%RDX,1)
ADD $0x10,%RDI ADD $0x10,%RDI
CMP %R10,%R8 CMP %R10,%R8
JB 6b897e JB 6b897e

Table 4: Example of subset transformations. Two vari-
ants were generated one for LSI_STREAM and the other for
FPI_STREAM. In the leftmost column, instructions in italic
correspond to the LS SUBSET and those in bold to the FP SUB-
SET

address of the branch instruction in the modified versions which is
due to the code being moved by MADRAS.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
All experiments were conducted on a XEON E31240 processor

(Sandy-Bridge) with 4 cores running at 3.30GHz. Each core has
a private L1(32 KB) and L2 (256 KB) whereas the L3 (8 MB) is
shared among all.
All applications were compiled with the Intel Fortran Compiler
(ifort 12.1.4) and the -O3 flag and the runs were made under LINUX
OS.

4.2 RTM Application: Focusing optimization
effort on the right loop

Reverse Time Migration (RTM) [6] is a standard algorithm used
for geophysical prospection. The code used in this study is an in-
dustrial implementation of the RTM algorithm.

Our RTM code operates on a regular 3D grid. The core of the
domain is processed uniformly, but a specific process is applied on
the borders of the domain, the skin of the domain, to annihilate
potential wave reflections. From a performance perspective, more
than 90% of the execution time of the application is spent in two
functions, inner and damping. These two functions are executing
similar code on two different parts of the domain, inner is devoted
to the core of the domain, while damping is used on the skin of the
domain. Standard domain decomposition techniques are used to

spread the workload on multicore target machines. Since the grid
is uniform, load balancing is easily achieved by using rectangular
sub-domains.

In our study, we focused on the inner routine which represents a
much larger execution time than damping.
In the inner function, 3 loops denoted Lapx (resp. Lapy and Lapz)
are used to compute the 3 components of the finite difference op-
erator along the 3 axis (X, Y and Z). A fourth loop computes the
wave-field. These four loops are themselves surrounded by 2 out-
ermost loops to complete the operator computation over the entire
sub-domain. The sub-domain size is too large to fit in the L1 or L2
caches, therefore cache blocking has to be used to optimize cache
usage.

Figure 2: Stream performance comparison for the RTM appli-
cation. For the three functions lapx, lapy and lapz, histograms
represent respectively the speed of arithmetic operations and
memory accesses depending on the blocking used for the data.

Figure 2 presents the results obtained by running the original
code, the LSI and FPI_STREAM variants. Blocking was performed
only along 2 dimensions, X and Y, and 3 different blocking strate-
gies were studied: (Bx = 450, By = 20), (Bx = 900, By = 20), (Bx
= 900, By = 77) where Bx (resp. By) denotes block size along
the X (resp. Y) axis. The leftmost (resp. center and rightmost)
histograms refers to Lapx execution time (resp. Lapy and Lapz).
The leftmost and center histograms indicate that FPI_STREAM
and LSI_STREAM are very close. This reveals that data access
penalty is limited (not worth being optimized) and furthermore not
very sensitive to block size. At the opposite, the large gap between
FPI_STREAM and LSI_STREAM for Lapz reveals a large data ac-
cess penalty: therefore the blocking strategy effort should only be
focused on Lapz.

4.3 Timing The Access To Individual Memory
Structure: EUFLUX application

EUFLUX is a 3D finite element CFD application from Das-
sault [9], ITRSOL (the iterative solver) represents over 80% of the
execution and is the most time consuming routine is EUFLUXm.
The EUFLUXm routine implements a sparse matrix-vector prod-
uct in a quadruply nested loop. Among the four different arrays,
three of them, VECX(2D), OMPU(3D) and OMPL(3D), are read-
only and the last one VECY(2D) is read and written. The code of
EUFLUXm is presented in Figure 3.

A quick inspection of the code reveals that most of the array

Figure 3: The upper figure presents the source code of the
matrix-vector product in EUFLUXm. The lower figure shows
the individual contribution in the overall execution time of
memory instructions targeting each array of the EUFLUXm
routine. Results are presented for 2 and 4 cores.

accesses suffer from bad stride access. The two innermost loops
could be interchanged or alternatively arrays could be restructured
(transposed). Restructuring an array is a complex and expensive
code modification because it has to be propagated throughout the
whole application. Therefore the real issue is to determine which
arrays should be prioritized for restructuring.

The groups analysis (see Section 3.3) applied on the loop shows
that among the 4 arrays, the accesses to OMPU and OMPL in Fig-
ure 3 are the most time consuming. The two arrays represent more
than 40% of the total execution time, followed by VECY and VECX
with an individual time share lower than 10%. Any optimization
effort has to consider that performance issues in the loop are essen-
tially tied to the OMPU and OMPL arrays.

4.4 Cache Coherence Protocol Analysis
Cache organization is a critical design decision in multicore pro-

cessors; we propose to apply differential analysis in order to in-
vestigate the cost of cache coherence protocols. This study is con-
ducted on the OpenMP version of the RTM application considered
in the first case study. From a coherency perspective RTM is an
interesting case: the code consists of iterations over a data parallel
loop. Between two consecutive iterations the same array is written
then read in the following iteration. First the write operations can
generate false sharing: a cache line being simultaneously accessed
in write mode by two different cores. Furthermore, the compu-
tation on a sub-domain requires access to data from other neigh-
boring sub-domains: typically, all of the data on the border of the

sub-domain are first written by a core and then in the next iteration
read by a different core. Such writes followed by reads on the same
memory location induce coherency traffic.

The methodology of measurements involves a simple transfor-
mation (S2L): all the store instructions of one loop are replaced by
load instructions without changing either the memory location or
the accessed register. Such a transformation will annul all of the
coherency actions which would have been normally triggered by
the store. Figure 4 denotes the execution time of all the innermost
loops executed. The bars corresponding to the S subset with the
S2L transformation are all at the same level (one) indicating a zero
performance impact. For reference, the variant based on simple
store deletion has been run. The results show an almost equivalent
performance with the original versions except for two loops which
present a non negligible store cost. From these results it can be
stated that the cache coherence overhead remains negligible for the
RTM application.

Figure 4: Evaluation of the cost of cache coherence protocol.
The S SUBSET with S2L transformation variants show similar
performances as their corresponding original versions. The S
SUBSET with DELETION transformation variants show sim-
ilar performances also, except for two loops which present a
relatively non negligible store cost.

4.5 NAS Benchmarks Characterization
In order to test the scalability of the DECAN tool regarding com-

plex codes, we chose the NAS Parallel Benchmarks NPB-OMP3.0
as a test suite and performed a basic characterization of the behav-
ior of its parallel loops. As known, most of the NAS Benchmarks
implement iterative algorithms, therefore the alteration of the loops
semantic leads to an earlier end of the program. This issue allowed
us to use the sampling technique introduced in Section 2.2.
Figure 5 presents the results obtained on five of the benchmarks:
BT, CG, LU, SP and EP. For each of them the hottest functions are
selected and only their loops were considered. Two DECAN tem-
plates were applied: LSI_STREAM and the FPI_STREAM.

The results provide a clear insight on the trend of each benchmark.
In the BT benchmark for example, the first two loops are driven by
memory operations. As the execution time of the loop decreases we
see more balance between the two versions. The loops of CG are
highly memory bound. The hint for this is given by the big gap be-
tween the ratios of the two templates, especially in the upper loops.
The only binary loop captured in EP performs a series of stores
which explains the extremely low ratio for the FPI_STREAM ver-
sion.

Figure 5: Results of the application of the two DECAN tem-
plates LSI_STREAM and FPI_STREAM on 5 of the NAS Par-
allel Benchmarks 3.0. In each table the 10 hottest parallel loops
are considered. For the two templates applied on each loop, the
ratio of the execution time on the original one is reported.

5. RELATED WORKS
The comparison with previous works needs to be done at two

levels: first, the basic mechanisms used for understanding low-level
interaction between hardware and software and second how these
mechanisms are integrated in a performance evaluation tool.

In terms of basic mechanisms, the closest work to DECAN is
the technique proposed by Fursin et al. [10] to determine a lower
bound on execution time. In their work, Fursin et al. use assembly
level instrumentation to determine the lower bound on the execu-
tion time. From that bound they derive the potential gain of opti-
mizations. Basically the idea is to transform all memory accesses
in order to target a unique memory location. The goal is to lead all
memory instructions into triggering cache hits. The timing of such
a modified code determines a best case performance where all data
accesses are L1 hits. They also introduce the idea of recovery code
to overcome the semantic loss. Our DECAN greatly extends this
idea by applying instruction suppression/modification to a much
larger class of instructions (not only load/store) but also by using
much more complex modification schemes (cf. section 3).

Besides modifying the binary as proposed in DECAN, there are
two standard approaches for analyzing low-level interactions be-
tween hardware and software: 1) hardware performance counters/
events and 2) simulation tools.

5.1 Hardware Performance Counters
For two decades hardware counters/events have attracted a large

deal of attention [13]. Counters have the ability to monitor various
events occurring within the processor at very low overhead without
altering the numerical output of the system. Hardware counters are
consequently used in a large number of tools; they are now natively
supported in the Linux kernel since the version 2.6 through the perf
subsystem [8].

Hardware events are excellent at capturing how a given piece
of hardware is used but very often they fail in evaluating the ex-
act performance impact: for example, hardware events can count
cache misses but what matters is not the number of cache misses
but the total impact of cache misses on performance i.e. the prod-
uct of the number of cache misses and the average cost of cache
misses. In general, hardware counters fail at evaluating accurately
such average costs. In contrast, DECAN can directly provide a de-
tailed estimation on how much a given array access costs.

Another difficulty with hardware counters is the correlation be-
tween source code and hardware event counts. Hardware counters
can be triggered on and off at the beginning and the end of a loop
structure or a function but the results are reported globally for the
whole loop/function and not for individual source code statements.

To refine further the link between performance issues and source
code, architects have extended the counter monitoring capabilities
with Precise Event Based Sampling (PEBS) [11]. PEBS is intro-
duced to link exactly a performance event with the delinquent in-
structions. First due to the statistical nature of the loop, there must
be a sufficient number of samples to get realistic information. In
general, this prevents using these mechanisms on too short loops
(less than a few ten thousands of cycles). Second, due to the re-
ordering mechanism of most x86 processors, it remains challeng-
ing to pinpoint the offending instruction [13].

In contrast to performance counters, DECAN can operate on

loops with a very short duration (1000 cycles), the main limita-
tion being the timer accuracy. Furthermore, the transformations
are directly performed on a few selected subsets of instructions al-
lowing a direct correlation between performance impact and the
binary/source code to be made.

One final difficulty with hardware performance events is their
complexity. First, their number is fairly high (in general over a
thousand) making them hard to use. Secondly, many of them re-
fer to low-level microarchitectural details which are not publicly
available making counter information hard to decipher. For exam-
ple, knowing that the reservation station is full and generates partial
stalls in the front end pipeline does not give a precise clue of what
to do to optimize the code. Interestingly enough, when used in con-
junction with hardware events, DECAN helps in the identification
of the instructions which are causing reservation station overflow.

5.2 Cache Simulators
In order to bridge the gap between the low-level information

brought back by hardware counters and the real needs of the op-
timization, cache simulators are used. The main drawback of these
simulators is the large overhead induced by the need to track every
memory access. Among the performance analysis tools built on the
top of cache simulators two well-known tools are detailed below.

Cachegrind: Cachegrind [4] is the cache profiler included in
the Valgrind instrumentation framework. When using Valgrind, the
original instructions never run on the host processor. Instead, Val-
grind converts instructions on-the-fly to an intermediate represen-
tation. Valgrind companion tools can easily and directly manipu-
late the intermediate representation which is then recompiled for
the target architecture. Cachegrind is based on the simulation of
configurable L1I, L1D, and L2 caches. It identifies the number of
cache misses for each line of the source code, with per-function,
per-module and whole-program summaries.

ThreadSpotter: Acumem AG [1] offers the commercial product
ThreadSpotter specially targeted at analyzing data access issues. It
relies on a statistical analysis of address traces to estimate various
potential problems with data access (stride, false sharing).

Both Cachegrind and ThreadSpotter are excellent at capturing
general code properties such as temporal and spatial localities. How-
ever, since both of them are using very simplified cache models
they fail to correctly assess the performance impact of the prob-
lems detected. Finally, since they focus only on data access, they
are missing all of the potential performance problems relative to
the arithmetic units.

5.3 Performance Evaluation Tools
Scalasca: Scalasca mainly focuses on MPI programs and is very

efficient for quickly identifying communication problems such as
late sender-early receiver. For OpenMP programs, Scalasca can
identify load balancing issues in data parallel loops and synchro-
nization issues. Scalsca uses source level instrumentation which is
well suited for the communication problems listed above (minimal
interference with the compiler). However for more general perfor-
mance bottlenecks Scalasca does not provide any specific explo-
ration technique besides hardware performance counters which by
themselves are not always adequate.

TAU: Tuning and Analysis Utilities (TAU) Performance Sys-
tem [14, 15] is a performance profiling and tracing framework. As

such, it offers much more flexibility in the performance investi-
gation techniques than Scalasca. The TAU framework addresses
performance problems on three levels: instrumentation, measure-
ment, and analysis. It provides instrumentation at different levels
and performs tracing on parallel programs.
Although TAU offers many possibilities of using (inserting / trig-
gering) various performance counters, it basically inherits all of
the key limitations of hardware performance counters and in many
cases, it will not be very helpful for performance bottleneck inves-
tigation.

PerfExpert [7] goes a step further by trying to analyze perfor-
mance bottlenecks and provide optimization guidelines. Again, it
mostly rely on hardware performance counters to evaluate perfor-
mance problems and suffers from the same problems as the others.
However, the approach of synthesising hardware counter informa-
tion to derive performance optimization is very powerful.

XE Amplifier: XE Amplifier [2] is an Intel tool for performance
analysis. It has different features, including stack sampling, thread
analysis and hardware event sampling. Some traditional features,
such as identifying the hottest modules and functions in a whole ap-
plication or tracking call sequences, are also supported. XE Ampli-
fier leverages hardware counters for in-depth analysis of the mem-
ory system and architectural tuning and associates performance is-
sues with the source code. If no symbol sources are found in the
binary, XE Amplifier navigates through the disassembled code at a
basic bloc granularity.

With a reduced set of tests (variants), DECAN can offer the abil-
ity to determine the source of issues that are worth investigating
(high potential Return On Investment). Complementary analyses
such as the ones provided by PerfExpert or XE Amplifier can be
used to derive what are the most profitable optimizations.

6. CONCLUSIONS AND FUTURE WORK
This article presents a novel approach based on partitioning the

instruction flow according to either the hardware resource accessed
or the memory targeted. Generating different variants from the
original binary allows the cost of each fraction of the flow to be
quantified. We call the general method the “differential” analysis
and propose the DECAN tool as an implementation. DECAN by its
concept is intrusive and can break the numerical stability of the ap-
plication; numerical accuracy is not an important matter in terms of
performance analysis except in cases where the control flow of the
application is altered. However, the tool supports multiple schemes
to detect or circumvent control flow hazards introduced by the dif-
ferential analysis.
Through several case studies, we have demonstrated how DECAN
can identify and quantify performance bottlenecks. We have also
shown the current main DECAN limitations: sensitivity to timer
accuracy, potential difficulties in interpreting the results and finally
limitations in dealing with complex code structure.

Future work will first focus on addressing the limitations listed
above. Furthermore, we plan to develop a systematic methodol-
ogy for generating variants and combining the obtained results in a
more meaningful manner.

Acknowledgments
This work has been carried out by the Exascale Computing Re-
search laboratory, thanks to the support of CEA, GENCI, Intel,

UVSQ, and by the PRiSM laboratory, thanks to the support of the
French Ministry for Economy, Industry, and Employment throught
the ITEA2 project H4H. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the CEA, GENCI,
Intel, or UVSQ.

7. REFERENCES
[1] Acumem. http://www.roguewave.com/.
[2] Amplifier xe.

http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe-documentation/.

[3] Likwid: Lightweight performance tools.
http://code.google.com/p/likwid/.

[4] Valgrind: instrumentation framework for building dynamic analysis
tools. http://www.valgrind.org.

[5] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliai, and C. Valensi.
Performance Tuning of x86 OpenMP Codes with MAQAO, page 95.
2010.

[6] E. Baysal, D. Kosloff, and J. Sherwood. Rerverse time
migration:geophysics, 1983.

[7] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke,
and J. Browne. Perfexpert: An easy-to-use performance diagnosis
tool for hpc applications. In 2010 ACM/IEEE, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[8] A. C. de Melo. Performance counters on linux: the new tools. 2009.
[9] Q. V. Dinh, A. Naim, and G. Petit. rapport final de synthèse sur

l’optimisation des logiciels de simulation numérique de
l’aéronautique. Technical report, Dassault Aviation, pages xii, 51, 53,
54, 70, 71, 83, 2007.

[10] G. Fursin, M. F. P. O’Boyle, O. Temam, and G. Watts. A fast and
accurate method for determining a lower bound on execution time:
Research articles. Concurr. Comput. : Pract. Exper.,
16(2-3):271–292, Jan. 2004.

[11] D. Levinthal. Performance analysis guide for intel R© coretm i7
processor and intel R© xeontm 5500 processors.

[12] H. Lu. Elf: From the programmer’s perspective. NYNEX Science and
Technology Inc, page 95, 1995.

[13] T. Moseley, N. Vachharajani, and W. Jalby. Hardware performance
monitoring for the rest of us: a position and survey. In Proceedings of
the 8th IFIP international conference on Network and parallel
computing, NPC’11, pages 293–312, Berlin, Heidelberg, 2011.
Springer-Verlag.

[14] S. Shende, A. Malony, S. Moore, P. Mucci, and J. Dongarra.
Integrated tool capabilities for performance instrumentation and
measurement. 2007.

[15] S. S. Shende and A. D. Malony. The tau parallel performance system.
The International Journal of High Performance Computing
Applications, 20:287–331, 2006.

[16] C. Valensi and D. Barthou. Madras: Multi-architecture binary
rewriting tool. Technical report.

