
1

CQA: A Code Quality Analyzer tool at binary level
Andres S. Charif-Rubial, Emmanuel Oseret, José Noudohouenou, William Jalby

Exascale Computing Research Laboratory, FR
Email: {achar,eoseret,jose.noudohouenou,william.jalby}@exascale-computing.eu

Ghislain Lartigue , Normandie Universite, FR
Email: ghislain.lartigue@coria.fr

Abstract—Most of today’s performance analysis tools are
focused on issues occurring at multi-core and communication
level. However there are several reasons why an application may
not correctly behave in terms of performance at the core level.
For a significant part, loops in industrial applications are limited
by the quality of the code generated by the compiler and do
not always fully benefit from the available computing power of
recent processors. For instance, when the compiler is not able
to vectorize loops, up to a 8x factor can be lost. It is essential
to first validate the core level performance before focusing on
higher level issues.

This paper presents the CQA tool, a loop-centric code quality
analyzer based on a simplified unicore architecture performance
modeling and on quality metrics. The tool analyzes the quality of
the code generated by the compiler. It provides high level metrics
along with human understandable reports that relates to source
code. Our performance model assumes that all data are resident
in the first level cache. It provides architectural bottlenecks and
an estimation of the number of cycles spent in each iteration
of a given innermost loop. Our modeling and analyses are
statically done and requires no execution or recompilation of
the application. We show practical examples of situations where
our tool is able to provide very valuable information leading to
a performance gain.

Keywords-performance evaluation, performance modeling; vec-
torization, static analysis;

I. INTRODUCTION

Most of today’s performance analysis tools [1], [3], [4], [6],
[7], [13], [18], [21], [22], [24] are focused on issues occurring
at multicore (shared memory resources) and communication
level (message passing). However there are several reasons
why an application may not correctly behave in terms of
performance at the core level. For a significant part, loops in
industrial applications are limited by the quality of the code
generated by the compiler and do not always fully benefit from
the available computing power of recent processors.

Analyzing the quality of the code generated by the compiler
is the cornerstone to ensure the highest execution efficiency
at the core level on a target architecture. The main goal is
to evaluate the quality of the exploitation of each feature of a
hardware architecture. On Intel 64 and Xeon Phi architectures,
the aim of code quality assessment is to leverage the data
parallelism (SIMD) and track down poor code patterns. The
CQA contains two fundamental aspects. First modeling the
behavior of the execution pipeline and then defining a set of
metrics that can help us determine which architectural speedup
opportunities could be worth. Even if only Intel 64 and Xeon

Phi architectures are covered, our analysis is general enough
to be applied to other architectures.

CQA does not cover memory issues. It must be used when
the remaining bottlenecks are computational, that is to say
when data is in the first level cache. It can also be used when
vectorization is the main goal for instance when nothing else
can be done to solve memory issues. The cycles estimation
provides a lower bound which can be compared with the real
execution time (i.e. from a profiler) to determine how far a
given loop is from the optimum.

It is essential to first validate the core level performance be-
fore focusing on higher level issues. After computational bot-
tlenecks have been removed, most performance gains should
benefit all the involved cores. Scalability issues have then to
be fixed to obtain a good overall efficiency. For instance, when
the compiler is not able to vectorize the loops, up to an 8x
factor can be lost on recent processors (e.g. Intel Haswell).
Another example is being bounded by the weight of expensive
instructions. Figure 1 depicts a simple OpenMP reduction

void red (int n, float *sum, float a[n], float b[n],
int inda[n], int indb[n])

{
int i;
float _sum = 0.0;

#pragma omp parallel for reduction(+:_sum)
for (i=0; i<n; i++)
_sum += sqrt (a[inda[i]] / b[indb[i]]);

*sum = _sum;
}

Fig. 1. OpenMP reduction example in C language

code snippet. The code is compiled with the gcc compiler. It
provides the highest optimization level −O3. Let us consider
that this loop is really time consuming in a given application.
A typical profiling phase will point out this loop. The first
and intuitive idea in terms of optimization strategy would
be to remove indirect access because the application will be
executed on multicore shared memory systems. However the
real bottleneck in this example is the square root and the
division which together have a higher cost.

CQA presented in this paper proposes the following contri-
butions:
• Code quality metrics such as vectorization ratio, number

of arithmetic instructions, number of expensive instruc-
tions, etc.

2

• Supporting all Intel 64 and Xeon Phi micro-architectures
starting back from Core 2 Duo to Haswell.

• A qualitative analysis of codes generated by the compiler
and based on our performance model and architecture
metrics.

• A static evaluation requiring no application execution. It
only requires analyzing a binary. Results of this analysis
are formatted as human understandable reports that can
lead to performance gains when applying suggested hints.

The paper is organized as follows: section II depicts the place
of CQA in the current performance evaluation tools landscape
and also its integration into the MAQAO [23] tool. Section III
describes our performance models for Intel 64 and Xeon
Phi architectures. Then, section IV presents the architectural
metrics that can be extracted from assembly code analysis
along with the available speedup opportunities. Section V
discusses the design decisions, implementation issues and
limitations of the tool. Finally, section VI presents a set of
case studies where CQA is able to provide very valuable
information leading to a performance gain.

II. CONTEXT AND METHODOLOGY

Before diving into a detailed description of the tool an
overview of where it fits in the big picture of performance
evaluation tools is provided.

A. Context

Performance issues slowing down applications can be the
consequence of multiple factors like computation, memory or
network issues (bottlenecks). There is no magic tool to find out
all issues an application can suffer from. Generally multiple
tools are used to target one category of issues. Nowadays
the majority of tools mainly focus on communication issues
due to scaling matters and in a lesser extend, on memory
issues. Computation issues are considered as less important
as memory issues. There are still four main scenarios where
they have to be tackled:
• when computation bottlenecks are more important than

memory usage
• when the code is not or partially vectorized
• when the compiler did generate very poor quality code

patterns
• when memory issues have been fixed but the code does

not run at full steam at the core level
The aim of CQA may seem pretty narrow but these scenarios
may be more frequent than one can think. We show in this
paper that such a tool can help fixing performance issues.

B. MAQAO and the Methodology

To tackle the emerging challenge of performance analysis
on complex many-core systems and hardware accelerators
the University of Versailles has been developing a perfor-
mance analysis and optimization toolchain called MAQAO:
the Modular Assembly Quality Analyzer and Optimizer
(MAQAO). The main goal of MAQAO is to analyse binary
codes and provide application developers with reports in order

Fig. 2. MAQAO Framework overview

to help them optimize their code. Another main key feature
of MAQAO is its extensibily. Users can easily write their own
plugins thanks to an embedded scripting language (Lua) and
an instrumentation language (MIL). It allows fast prototyping
of new MAQAO-tools.

Figure 2 depicts the layers of the MAQAO framework.
CQA is typically used after a profiling pass performed

by the MAQAO performance evaluation tool which provides
function and loop hotspots. CQA will only run on the specified
innermost loops, where usually most of the time is spent. For
applications containing few hot inner loops, it is sometimes
possible to extend an optimization from one hot loop to
many others. As described later on the experiments section,
optimizing the 5-10 hottest YALES2 loops benefited many
other loops by:

• reporting to the Intel compiler group an issue prevent-
ing the compiler to optimize double indirections arrays
(Fortran 90: a%b%array)

• replacing pointers to shared arrays with allocatable ref-
erences

Optionally, the architecture of a target machine can be pro-
vided. The default one is the current machine the tool is ran

Fig. 3. MAQAO framework parts used by CQA

3

on. For more flexibility, it is also possible to specify functions
instead of loops. In that mode, all innermost loops in functions
with a name matches provided regexps are analyzed.

C. Integration of CQA into MAQAO

CQA was built as a MAQAO module using the MAQAO
Lua API. It utilizes the binary manipulation layer
and Analysis layer of the framework. The
binary manipulation layer is used to open a given binary, to
disassemble it and to extract source correlation information
when available (e.g. source lines). The Analysis layer
provides the following information for a given loop:
• data dependency graph (DDG)
• place of the current loop in its loop hierarchy
• existing paths in the CFG of the loop
• unrolling information if detected
Currently CQA is fully integrated into the MAQAO frame-

work and is available for use in the binary release [23]. Figure
3 summarizes the integration into MAQAO. In the next two
sections we discover the performance model used by the tool
and then the metrics on which the high level reports are based.

III. PERFORMANCE MODELING

This section explains how the performance model of an
architecture is built. The Intel Sandy Bridge processor is
taken as an example. The modeling of the execution pipeline
is first detailed. Then the methodology giving the latencies
and throughputs of instructions is exposed. After that the set
of additional analyses used to refine the execution pipeline
modeling are explained. The last part of this section proposes
a mean to evaluate the real performance of a given loop in
order to compare it with the CQA estimation which is actually
a lower bound on execution time (optimistic).

A. Benchmarking latency and throughput of instructions

The MAQAO microbenchmark module, microbench, mea-
sures the performance of individual instructions provided by
the MAQAO grammar generator and forwards it to the CQA
module. In other words, for each element of an instruc-
tion sequence, CQA knows the corresponding impact on the
selected machine model. Up to now most instructions are
supported by microbench, in particular SSE/AVX instructions
and basic general-purpose instructions involved in loop control
and address calculation (ADD, SUB, CMP, conditional jumps).
SSE/AVX are x86 vector instruction sets and must be used
to harvest full performance from recent processors. For non
supported instructions, Agner Fog’s instruction tables are used.

The instruction list provided by the grammar generator is
a text file, showing one line for each instruction. Instructions
are described by their name (opcode) and operands (type and
order). For each instruction, the module measures throughput
and latency, that is cycles per instruction, by generating,
compiling and running an assembly kernel structured as a
loop. The body of this loop is a sequence of independent (for
throughput) or dependent (for latency) instructions formed by
the same base instruction (see figure 4(a) and figure 4(b)).

In terms of throughput, the minimum number of independent
streams to issue is the product of the latency by the number of
execution units that can work in parallel. For example, on the
Intel Haswell processor, two execution units can execute prod-
ucts with a 5 cycles latency, requiring at least 10 independent
instructions streams to harvest full power (to fill all pipelines
stages for both units). For latency, a RAW dependency must
exist between each consecutive stream (the register written by
a stream must be read by the next one).

Some instructions are more complex to process than others
like DIV/SQRT since their latency depends on operands value.
In that case:
• two loops must be generated for each measurement: one

for best case (fastest) and another for worst case (slowest)
• these loops use dedicated operand values (typically 1.0

for best case and empirically found for worst case)
• to measure latency, the value of the destination operand

must be reset at each iteration without breaking inter-
iteration dependencies. It can be done by a MIN instruc-
tion, returning the minimum value of two operands

For out of order processors like Intel processors from Core
2 to Haswell, the module also measures for each instruction
the number of fused (in the front-end) micro-operations (uops)
and the dispatch of unfused uops (in the back-end) in execution
ports. Hardware counters are used for that purpose.

For stable and precise measurements:
• the kernel is run before measurements to warm up buffers,

caches and prefetchers
• the most precise and least intrusive timing method is used:

RDTSC-based. RDTSC is an x86 instruction returning
the number of reference cycles (cycles at reference fre-
quency) elapsed since last reset

• the kernel is repeated multiple times during measurements
to mitigate potential power saving mechanisms (after a
long inactivity period, the hardware could require a long
time, e.g. milliseconds, to recover full speed)

• the binary driving the kernel is repeated multiple (typ-
ically 31) times to report statistically valid measures
(a median is significant only over a sufficiently big
population)

• the binary is pinned on a core to get rid of migration
overhead

L1: L2:
ADDSS %XMM0,%XMM0 ADDSS %XMM0,%XMM1
ADDSS %XMM1,%XMM1 ADDSS %XMM1,%XMM2
(...) (...)
ADDSS %XMM6,%XMM6 ADDSS %XMM6,%XMM7
ADDSS %XMM7,%XMM7 ADDSS %XMM7,%XMM0
SUB $8,%EBX SUB $8,%EBX
CMP %EBX,%ECX CMP %EBX,%ECX
JG L1 JG L1

(a) Independent streams (b) Dependent streams
. (throughput) (latency)

Fig. 4. Independent and Dependent streams (assembly code)

B. Execution pipeline modeling
Figure 5 shows an overview of the execution pipeline of the

Intel Sandy Bridge processor. It is composed of in-order and

4

out-of-order parts. The core of the out-of-order engine (i.e. the
reservation station) is not modeled because of its complexity
and lack of documentation. The other reason is CQA targets
best performance (lower bound on cycles).

Each stage is modeled separately in order to have a modular
and upgradable model. Thanks to this modular approach CQA
supports all micro-architectures since Core 2 duo until the
latest one, Haswell. To obtain an estimation of the number
of cycles for a loop iteration, corresponding instructions are
scanned and travel through the stages. Depending upon the
state of the pipeline, bubbles can be inserted when suffering
from a bottleneck. Additional penalties in term of cycles may
be added in some specific cases.

Beyond the estimation of the number of cycles spent in one
iteration of a given loop, CQA also gathers statistics which
provide an insight within the bottlenecks. For example it is
possible to see that a loop is stressing too many specific
resources, which in most cases, is translated into a slowdown.
CQA provides both front-end and back-end statistics.

CQA supports Xeon Phi via a simplified machine model
due to the in-order flavor of this processor. Instructions can
be decoded in two pipes U and V (with pairability rules) and
vector instructions are executed by a single Vector Processing
Unit (VPU) accessible via the U-pipe.

C. Static analysis

Thanks to advanced static analysis, the CQA performance
model can be refined in order to better reflect reality.

1) Data Dependency Graph: Since our model does not
simulate the reservation station stage of the execution pipeline,
penalties due to data hazards must be taken into account.
To address this issue, the data dependency graph of a given
innermost loop is looked for true data dependencies (Read
After Write) on register operands within two consecutive loop
iterations. CQA can then estimate cycles taking them into
account by considering the maximum cycles count between
front/back-end and the critical path latency (longest depen-
dency cycle). Consequently, the impact of loop-carried (inter-
iterations) dependencies will be reported for affected loops
(typically reductions into a scalar).

2) Loop hierarchy: The Intel Xeon Phi instruction set in-
troduced scatter/gather operations on vectors. Always coupled
with a mask-conditional branch instruction which generates a
small loop, they mislead the innermost loop focus strategy of
CQA. To avoid such pitfalls, these loops are discarded and
only considered as scatter/gather instructions.

3) Paths: Depending upon the complexity of the control
flow structure, innermost loops may have multiple paths from
the entry to the exits. This is usually a clear sign of complex
loop structure. Most of the time it is caused by if-statements.
When experiencing such cases CQA provides an analysis for
each path with a arbitratry limit of eight paths (this value can
be changed).

4) Unroll factor heuristic based on arithmetic patterns:
Reporting loop unroll factor (as applied by the compiler) is
useful since loop unrolling can badly interact with source-
level optimizations. For instance, one does not expect that the

compiler unrolls a loop that was already unrolled at source
level. For some pathological cases/patterns (typically spill/fill),
CQA can advise to lower the unroll factor.

MAQAO detects loop unroll factor by comparing the arith-
metic (or memory) footprint of the biggest (main) and the
smallest (peel/tail) binary loop within the same source loop.
If a source loop is composed of only one binary loop (non
unrolled or unrolled with no peel/tail code) or binary loops
with a similar footprint (multi-versioning), no unroll factor is
provided.

The heuristic is specialized for Xeon Phi since peel/tail
loops can be vectorized (by write-masking) or generated as
scalar GATHER/SCATTER based loops.

5) Source and binary loops relationship: Source loops can
be converted into potentially multiple binary loops. Figure 6
illustrates the correspondence between a source loop and the
kind of binary loops that are usually found.

Fig. 6. Structure of assembly loops and corresponding source loop

This is usually due to the compiler choice of generating
multiple strategies to be selected at runtime. It can also be split
into multiple pieces, typically a peel loop, a main loop and a
tail loop. In general peel and tail loops are used to treat cases
not handled by the main loop (starting/ending iterations) when
for instance the source loop was vectorized and/or unrolled.

D. Dynamic extension

In order to evaluate the gap between our prediction and the
real number of cycles spent in a loop, an optional dynamic
extension was added. It consists in a MIL [5] script and some
post processing based on the returned data. The MIL script
counts the number of cycles spent in a given loop. Then a post-
processing Lua script compares the static estimation against
the dynamic observed measure. The gap between these two
metrics provides a valuable information on the degradation of
the real performance since the static estimation considers data
as resident in the first level cache.

IV. ARCHITECTURAL METRICS AND
SPEEDUP OPPORTUNITIES

Code quality analysis at core level is only useful if speedup
opportunities are identified for a given architecture. Indeed, it

5

Fig. 5. Intel Sandy Bridge architecture execution pipeline model overview

is essential since metrics will evaluate the utilization efficiency
of these opportunities.

A. Speedup opportunities

Speedup opportunities are defined as mechanisms by which
it is possible to enhance the overall performance of a compute
core. Sometimes these may imply some restrictions (e.g.
arithmetical precision).

1) Vectorization: Vectorization is one of the most important
levers when it comes to enhancing the performance of a code.
Based on the instructions found in a given piece of code, a
degree of vectorization is computed. Indeed, in order to exploit
the vector facility, vector extensions must be used.

2) Low cost instructions: Some architectures provide fast
instructions which can imply some restrictions. For instance
if precision is not a major concern, recent Intel processors
provide fast reciprocal instructions to lower the cost of the
expensive DIV/SQRT instructions.

3) Data alignment: Most architectures have a better effi-
ciency at reading data from memory when it is aligned on a
given boundary. Using instructions which move non aligned
data has an extra cost. Recent processors succeed in reducing
the cost of such memory access but there is still a small
difference that can become important if multiple instructions
are concerned.

B. Metrics

1) Vectorization: The degree of vectorization will be com-
puted as the ratio vectorized instructions

vectorizable instructions . It is even possible to
produce multiple ratios by using a two-level categorization
of vector instructions. The instruction set architecture (ISA)
can manipulate single or double precision values in scalar or
packed (vectorized) mode. A vector efficiency ratio is also
provided in order to verify if the compiler has efficiently
vectorized the code.

Another important fact to take into account is that, due
to architectural limitation, mixing SSE and 256 bits AVX
instructions induces a typical 75 cycles penalty and should
be avoided. In that case, CQA displays the number of such
transitions and the corresponding workaround.

2) Expensive instructions: Reporting expensive instructions
provides users with a hint. The compiler may have generated a
poor code pattern that the user is unaware of. The user can then
investigate the issue. The following instructions are tracked:
• DIV/SQRT
• conversions
• unaligned memory accesses
3) Data dependencies: Presence of true data dependencies

always has to be checked because it can drastically limit the
performance. Sometimes it is possible to remove it.

4) Register pressure: Some code optimizations rely on the
number of available registers. Determining the register pres-
sure of a piece of code may provide interesting indications. For
instance, if the register pressure is low then unrolling may be
a good option. Alternatively, if the compiler resorts to spill/fill
mechanisms and there are available registers, then it means that
its register allocation heuristic failed to use all the available
registers. The compiler actually uses an approximation and
not the optimal solution since the problem is NP-Complete.
One option is to switch to intrinsics if it is worth it. Note that
this kind of optimization may really pay only if the L1 cache
cannot host spill/fill values.

5) Compiler flags: The compiler remains the best tool to
optimize an application. However it requires a lot of help.
Some common flags are sometimes forgotten and the impact
on the performance is catastrophic. For instance GNU and
Intel compilers need a special flag in order to generate code
for a specific architecture. That means that, even when using
the most recent processors, the compiler does not generate
the code that will take advantage of the available instructions,
if that flag is not present. CQA handles the parsing of the
compiler flags used to compile the given binary (when the
information is available) and creates a report if an important
flag is missing. Conversely some flags may provoke issues and
this also can be notified.

C. Reports

Estimated cycles, execution bottlenecks and low level met-
rics would not be of much assistance to a user if presented as
is. CQA provides human readable reports which are related
to their source code when debug information is available in

6

the binary. Detected issues are classified by confidence level.
There are four of them:
• high. Provides information that most of the time leads to

a performance gain.
• potential. The proposed optimization may be interesting.
• hint. No real match but provides the most important

metrics that are outside the normal ranges.
• expert. Low level details only suitable for experts. For in-

stance it provides the assembly code of a given loop and a
breakdown of cycles spent in front-end (instruction fetch,
decode...) and back-end (execution ports, DIV/SQRT unit
and critical path latency).

CQA can also display the speedup that can be gained
by solving some listed issues (vectorization, first bottleneck
and slowdown caused by scalar integer instructions) under
optimistic conditions (mainly: data in L1).

More information about the majority of advice provided by
CQA is available in the tutorial section of MAQAO website
[23]. Section VI presents examples of reports and how they
are used.

V. IMPLEMENTATION AND DESIGN DECISIONS

In the two previous sections we have discovered the perfor-
mance model used by the tool and also the metrics on which
the high level reports are based. In this section both the design
decisions that were taken along with the associated accuracy
of the produced reports and the limitations of the performance
model will be discussed.

A. Design decisions and limitations

The first design decision was to establish the target audience
of the tool because presenting results on the analysis of
assembly code was not obvious. The best response was to
consider reports based on confidence levels, which naturally
classify reports understandable by regular developers and of
interest for experts. As stated at the beginning of this paper,
the model is based on the hypothesis that data are resident in
the first level cache and does not consider interactions between
threads. Obviously the predicted performance gains will not
be correct when data are resident in higher level caches
or memory. The tool remains useful even if performance
predictions are not correct. Detecting vectorization issues for
instance remains very important because it generally requires a
good memory layout. So it is important to take this information
into account when working on memory issues (e.g.: reshaping
data structures). In practice the tool can be used in conjunction
with dynamic characterization tools (like DECAN [14]) that
can measure to which extend computation issues matters.

Since our analyses are statically done there is no silver bullet
to deal with branches typically caused by i f − statements.
The selected choice was to generate results considering each
control flow path separately. It may sound simplistic but
i f − statements are most likely to be a performance killer in
a loop. One of the main goals of the tool is to provide an
idea about the quality of the code. In this case that means
that, either the compiler generated a poor quality code or the
algorithm has to be changed.

Some issues are compiler specific and the tool only supports
GNU and Intel compilers at the moment, which already
represents a pretty high percentage of users.

B. Implementation difficulties

The tool is architecture dependent since it helps getting the
best out of a given architecture and even micro-architecture.
A special effort has been necessary to be able to properly
handle architectures (and micro-architecture) dependent and
non-dependent parts of the software.

Reports based on bad pattern detection are actually founded
on the expertise of the developers. This supposes performing
performance evaluation and optimization of real scientific
applications using the different compilers and first finding
issues by hand. The next step consists in automating the
recognition of these issues in the form of high level reports.
Many adjustments and testing have been necessary to reduce
to a very low percentage false positives. For instance we use
a data dependency graph to take into account penalties due to
data hazards and inter-iteration dependencies.

VI. CASE STUDIES

CQA has been successfully used [12] as a basis for re-
trieving low level quality metrics. This section presents three
case studies showing how to optimize applications thanks to
CQA. The first two examples deal with real life scientific
applications and have been directly used by the application
developers. The last example demonstrates via CQA how an
a priori simple code can perform poorly. These codes have
been compiled with Intel compilers. Presented CQA reports
are not exhaustive: only sentences that are useful to the current
case study are selected.

A. YALES2

YALES2 [17] is developed at CORIA near Rouen, France.
It is a numerical solver dedicated to the simulation of turbulent
reactive flows with the Large Eddy Simulation method. It
is a finite volume code which can deal with unstructured
meshes and has an innovative 4th order spatial scheme for
the discretization of convective and diffusive terms. It is
based on the low-Mach number approximations of the Navier-
Stokes equations and thus has to solve an elliptic Poisson
equation at each iteration. A major feature of the code is
that it implements a very efficient Deflated Preconditioned
Conjugate Gradient (DPCG) to solve this problem [15]. It has
been demonstrated to scale very well up to more than 16’000
cores. Indeed, the pure MPI version is based on a subdomain
decomposition with adjustable domain size allowing a very
efficient cache usage. Intel Fortran compiler 14.0.1 was used
to compile YALES2, using -O2 -xHost flags (-O3 provides
no significant speedup). If no contrary precision, all results
are for and on a Sandy Bridge machine. Analyzing the hottest
loops with CQA reveals (typical example given figure 7) that
most of them are not vectorized and the quality of their binary
code is very low (lot of integer instructions, science being
on floating-point values, and saturated load ports). Figure 8

7

Your loop is processing FP elements but is NOT OR
PARTIALLY VECTORIZED and could benefit from full
vectorization. (...) By fully vectorizing your
loop, you can lower the cost of an iteration from
7.00 to 4.38 cycles (1.60x speedup).
Two propositions:
- Try another compiler or update/tune your
current one:

* Intel: use the vec-report option to understand
why your loop was not vectorized.
If ‘‘existence of vector dependences’’,
try the IVDEP directive. If, using IVDEP,
‘‘vectorization possible but seems inefficient’’,
try the VECTOR ALWAYS directive.
- Remove inter-iterations dependences from your
loop and make it unit-stride.

Detected a slowdown caused by scalar integer ins-
tructions (typically used for address computation).
By removing them, you can lower the cost of an it-
eration from 7.00 to 5.00 cycles (1.40x speedup).
To reference allocatable arrays, use
‘‘allocatable’’ instead of ‘‘pointer’’ pointers.
For structures, limit to one indirection. For
example, use a_b%c instead of a%b%c with a_b set
to a%b before this loop.

Fig. 7. Initial CQA report for the YALES2 typical loop

! for each element
do i = 1, size_outer

elt => elts(i)

! for each pair
do j = 1, size_inner

! integer, pointer :: val(:)
ind1 = elt%p1%val(j) ! node #1
ind2 = elt%p2%val(j) ! node #2

coeff = a(j) * (b(ind2) - b(ind1))
c(ind1) = c(ind1) + coeff
c(ind2) = c(ind2) - coeff

end do

end do

Fig. 8. YALES2 original loop

presents a typical loop with both indirect access and double
structure indirections. Vectorization is limited/prevented by
indirect access (in general not efficient without hardware
support) and sub-optimal code quality is present each time
source code contains double structure indirections or pointers
targeting allocatable arrays. Indirect accesses in data structures
cannot be avoided: they simply reflect the unstructured aspect
of the discretization mesh [16].

To optimize YALES2, the typical loop presented in figure 8
is analyzed with CQA in different versions:
• original (with double structure indirections and generic

pointers to access arrays)
• single indir: obtained from original by replacing double

with single structure indirections as shown figure 9.
• allocatable: obtained from single indir by replacing

generic pointers with allocatable variables
If a performance gain is predicted by CQA, YALES2

is recompiled and rerun after optimizing the hottest loop
matching the typical loop pattern. If speedup is confirmed,
the optimization is applied for other hot loops with the same

do i = 1, size_outer

! (...)
elt_p1 => elt%p1
elt_p2 => elt%p2

do j = 1, size_inner

ind1 = elt_p1%val(j)
ind2 = elt_p2%val(j)
! (...)

end do

end do

Fig. 9. YALES2 loop after replacing double indirections

metric original single indir allocatable
cycles 9 7 4.5
used x86 registers 15 16 9
stack references 0 4 0
nb instructions 32 22 13
bytes loaded 92 60 28
FP ops per cycle 0.44 0.57 0.89

TABLE I
MOST IMPACTED CQA METRICS DURING KERNEL OPTIMIZATION

pattern. One can see in table I than CQA estimates a 2x
speedup from the original to the fully optimized version and
the corresponding assembly codes in figure 10.

By optimizing both double indirections and allocatable
pointers, the speedups described table II were obtained on
three datasets warming completely different portions of the
code.

Another way to optimize YALES2 is to address the vec-
torization issue mentioned in figure 7. Since it is difficult to
change global data structures, CQA was used to statically
estimate the potential speedup for a given transformation
enabling vectorization. Forcing vectorization of the original
loop via a pragma alters its semantic. This is caused by
indirect accesses present in reductions. One approach consists
in moving these reductions in two extra loops as presented
in figure 11 by adding some arrays allowing a reverse access
(getting pairs from nodes). The first loop contains indirections
from pairs to nodes and precomputes coeff for all pairs. The
second and third loops add to each node, coeff contributions
coming from all matching pairs. In other words, computing
coeff (from pairs and nodes) and affecting it to nodes is then
decoupled, making vectorization possible. Vectorization has
been forced by using SIMD directives on top of all innermost
loops. The original loop costs 4.5 cycles per source iteration,
according to CQA. The first loop of the transformed set of
loops can not be vectorized, due to the indirection, and still

Appl. exe. time (s) 3D cylinder MS 1D flame 1D flame
original 111 56.6 84.9
optimized 63.7 36.85 68.9
speedup 1.74 1.54 1.23

TABLE II
APPLICATION SPEEDUPS OBTAINED ON THREE YALES2 DATASETS

CORRESPONDING TO DIFFERENT PHYSICS

8

Fig. 10. Original vs optimized assembly code. Instructions in italic have
been suppressed in the optimized code and other instructions are very similar
in both versions

costs 3 cycles per iteration. The second and third internal loop
still cost 1 cycle (if vectorized) or 3 cycles (if not vectorized)
per iteration. Moreover, due to the small number of iteration
count in the inner loop (≈ 5−15), the overhead of the external
loop can be important. Even when maximum vectorization is
achieved, there is no gain to hope from this approach. These
conclusions have been validated in the real application: the
second approach is actually 2 to 3 times more CPU consuming
than the original one.

B. QMC=Chem

QMC=Chem [19], [20] is a Quantum Monte Carlo appli-
cation for Chemistry developed at Paul Sabatier University
in Toulouse, France. It has very good peta- and exascale
properties (embarrassingly parallel).

It presents two main hotspots: a matrix inversion (using
DGETRF and DGETRI BLAS calls) and a hand-made sparse
matrix-vector multiply (SPMV). Focus will be put on the
second one since it is the only one that the application
developer can reasonably optimize.

The SPMV routine multiplies a matrix A with 5 matrices
B1-B5. The A matrix is then reused for the five multiplications
but the loop is distributed in 3 loops: the first loop processing
B1 and B2, the second B3 and B4 and the last one B5 (see
figure 12, were B1 and B2 are processed). Figure 13 shows
that the loop is vectorized but uses only half vector width (128
bits SSE instructions run on 256-bits AVX machine) and that
a 2x speedup could be gained.

Following CQA propositions, vector arrays have been
aligned and recompiled with −xHost (micro-architecture spe-
cialization). After this optimization (figure 14), CQA reveals

!DIR$ SIMD
do j = 1, size_inner

ind1 = elt%p1%val(j) ! node #1
ind2 = elt%p2%val(j) ! node #2

coeff(j) = a(j) * (b(ind2) - b(ind1))

end do

! for each node
do j = 1, size_inner2

! first and last pairs connected to node #1
beg = rev_elt_p1_index (j)
end = rev_elt_p1_index (j+1)
coeff_sum = 0.

! for each pair connected to node #1
!DIR$ SIMD

do k = beg, end-1
coeff_sum = coeff_sum + coeff &

(rev_elt_p1 (k))
end do

c(j) = c(j) + coeff_sum
end do

! similar to previous loop but on node #2
do j = 1, size_inner2

beg = rev_elt_p2_index (j)
(...)

end do

Fig. 11. YALES2 vectorizable version of the original loop

do j=1,LDA

C1(j) =C1(j) +(A(j,k_vec(1))*d11 +
A(j,k_vec(2))*d21 +
A(j,k_vec(3))*d31 +
A(j,k_vec(4))*d41)

C2(j) =C2(j) +(A(j,k_vec(1))*d12 +
A(j,k_vec(2))*d22 +
A(j,k_vec(3))*d32 +
A(j,k_vec(4))*d42)

enddo

Fig. 12. QMC=Chem loop computing A.B1 and A.B2

Your loop is vectorized (all SSE/AVX instructions
are used in vector mode) but on 50% vector length.

Assuming all data fit into the L1 cache, each
iteration of the binary loop takes 8.00 cycles. At
this rate:
- 50% of peak computational performance is reached
(8.00 out of 16.00 FLOP per cycle (GFLOPS @ 1GHz))

Your loop is processing FP elements but is NOT OR
PARTIALLY VECTORIZED (...).
By fully vectorizing your loop, you can lower the
cost of an iteration from 8.00 to 4.00 cycles
(2.00x speedup).

Propositions:
- Pass to your compiler a micro-architecture spe-

cialization option:

* Intel: use axHost or xHost.
- Use vector aligned instructions:
1) align your arrays on 32 bytes boundaries,
2) inform your compiler that your arrays are

vector aligned:

* Intel: use the VECTOR ALIGNED directive.
- Use the LOOP COUNT directive

Fig. 13. Initial CQA report for QMC=Chem

9

Your loop is fully vectorized (all SSE/AVX
instructions are used in vector mode and on
full vector length).

The binary loop is loading 320 bytes (80 single
precision FP elements).
The binary loop is storing 64 bytes (16 single
precision FP elements).

Assuming all data fit into the L1 cache, each
iteration of the binary loop takes 10.00 cycles.
At this rate:
- 80% of peak computational performance is reached
(12.80/16 FLOP /cycle(GFLOPS@1GHz))
- 100% of peak load performance is reached (32/32
bytes loaded /cycle(GB/s@1GHz))

Load units are a bottleneck. Try to reduce the
number of loads. For example, provide more
information to your compiler:
- hardcode the bounds of the corresponding ’for’
loop

used ymm registers : 10 (low level metric)

Fig. 14. CQA report for QMC=Chem after recompiling with -xHost and
aligning vector arrays

that the loop is now fully vectorized (on full vector length)
but the bottleneck is now load units. According to source
code only 48 elements could be loaded (if correctly reused
from registers) but 80 were effectively loaded. And the low
level metrics showed that only 10 registers were used (out
of 16 available on x86 64). CQA proposes to reduce the
number of loads by hard coding the loop bounds. Applying
this optimization (LDA transformed into a constant defined
at compile time), CQA reported 14 registers used, 48 loaded
elements (figure 15) and a 100% computational resources
usage (peak performance). Measured speedup was about 10%
locally (matrix multiply) and 5-6% globally (application).

Your loop is fully vectorized (...).

The binary loop is loading 192 bytes (48
single precision FP elements).

Assuming all data fit into the L1 cache, each
iteration of the binary loop takes 8.00 cycles.
At this rate:
- 100% of peak computational performance is
reached (16/16 FLOP /cycle(GFLOPS@1GHz))

used ymm registers : 14 (low level metric)

Fig. 15. CQA report for QMC=Chem after hardcoding loop bounds

C. Complex

The code presented in figure 16 illustrates how CQA can
help to optimize a very simple code (expected to use full
processing power). The loop divides two complex arrays into
a third one. Using Intel compiler, with typical flags (-g -
O2 -xAV X), CQA detects that slow x87 code was generated
(figure 17) and advises to use an option called complex-
limited-range. Following this direction, code generation is
much more efficient (figure 18). Execution time is divided
by approximately 100, probably due to the cost of frequent
commutations between the x87 and the SSE/AVX FPUs.

COMPLEX(8), INTENT(OUT) :: a(1:n)
COMPLEX(8), INTENT(IN) :: b(1:n)
COMPLEX(8), INTENT(IN) :: c(1:n)

DO i=1,n
a(i) = b(i) / c(i)

ENDDO

Fig. 16. Complex divide code

48 x87 instructions are processing arithmetic or
math operations on FP elements in scalar mode
(one at a time).

Detected X87 INSTRUCTIONS.
x87 is the legacy x86 extension to process FP
values. This instruction set is much less ef-
-ficient than SSE or AVX. In particular, it
does not support vectorization (x87 units not
being vector units).
(...)
Intel: if complex divides are used, use
complex-limited-range that is included in
fp-model fast=2 (see manual for safe usage).

Fig. 17. CQA report for complex divide using x87 instructions

Your loop is vectorized (all SSE/AVX instructions
are used in vector mode) but on 93% vector length.

The divide/square root unit is a bottleneck.

Fig. 18. CQA report for complex divide using AVX instructions

VII. RELATED WORK

CQA is unique when considering quality analysis of code
generated by compilers.

Intel IACA [11] appears to be the closest tool to CQA. It
is quite similar in terms of performance modeling but differs
in many ways. Like CQA, IACA computes static (optimistic)
performance metrics for an innermost loop. In other words,
these values can only be reached for an infinite loop with all
of its operands in registers or in the first level cache. While
CQA only needs a binary file, IACA requires recompiling
source code in order to add special markers in the application.
As far as we know, IACA does not simulate finely the front-
end because it does not consider it as a possible bottleneck.
CQA simulates each stage of the legacy front-end pipeline
along with the micro-operations cache and the loop buffer.
Furthermore, CQA provides the metrics output by IACA but
it also provides a lot of extra metrics: vectorization ratio,
average length of vectors used, arithmetic intensity, etc. CQA
provides high-level reports aiming at helping the application
developer (even with no knowledge on computer architecture
and compilation) to transform its code or use more efficient
compiler flags. Finally instead of displaying metrics at the
instruction level, CQA displays metrics at loop level.

With respect to the latency and throughput information of
instructions, other sources [9] [10] including IACA have their
own methodology to obtain these.

Other tools using hardware performance counters or dy-
namic analyses can provides a restricted subset of the patholo-
gies we can detect. VTune provides a few hints on some archi-
tectural bottlenecks based on hardware performance counters.

10

For instance replacing divisions by the product of inverse when
the divide unit is saturated. Some tools [2], [8] based on
dynamic analysis can detect vectorization oppotunities. The
main difference of these approaches, when compared with
CQA, is the need to execute the application and also a lesser
number of pathologies detected.

VIII. CONCLUSION

This paper introduced the CQA tool, a loop-centric code
quality analyzer tool based on architecture performance mod-
eling and quality metrics. Performance modeling of the ex-
ecution pipeline provides an estimation of the number of
cycles spent in each iteration of a given innermost loop along
with the architectural bottlenecks. The tool also analyzes the
quality of the code generated by the compiler and provides
high level metrics along with human understandable reports
that relate to source code. Our modeling and analyses are
statically done and do not require any application execution
or recompilation. We show practical examples of situations
where our tool is able to provide very valuable information
leading to a performance gain.

For future work, an extension that covers the new ATOM
(Silvermont) processors is planned. Another important target
would be ARM. As mentioned before, CQA reports cycle
estimations given the fact that data is in the first level cache.
A nice extension would be to have estimations when data is
in higher level caches up into the main memory.

IX. ACKNOWLEDGEMENTS

This work has been carried out by the Exascale Computing
Research laboratory, thanks to the support of CEA, GENCI,
Intel, UVSQ, and by the PRiSM laboratory, thanks to the
support of the French Ministry for Economy, Industry, and
Employment through the PERFCLOUD project. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the CEA, GENCI, Intel, or UVSQ.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance analysis
of optimized parallel programs, 2008.

[2] O. Aumage, D. Barthou, C. Haine, and T. Meunier. Detecting SIMDiza-
tion Opportunities through Static/Dynamic Dependence Analysis. Sept.
2013.

[3] S. Benedict, V. Petkov, and M. Gerndt. Periscope: An online-based
distributed performance analysis tool. In M. S. Müller, M. M. Resch,
A. Schulz, and W. E. Nagel, editors, Parallel Tools Workshop, pages
1–16. Springer, 2009.

[4] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne. Perfexpert: An easy-to-use performance diagnosis tool for
hpc applications. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] A. S. Charif-Rubial, D. Barthou, C. Valensi, S. S. Shende, A. D. Malony,
and W. Jalby. MIL: a language to build program analysis tools through
static binary instrumentation. In 20th Annual International Conference
on High Performance Computing (HiPC’13), Hyderabad, India, Dec.
2013.

[6] I. Corporation. Intel R©Advisor XE 2013, 2013.
http://software.intel.com/en-us/intel-advisor-xe.

[7] I. Corporation. Intel R©VTuneTMAmplifier XE 2013, 2013.
http://software.intel.com/en-us/intel-vtune-amplifier-xe.

[8] G. C. Evans, S. Abraham, B. Kuhn, and D. A. Padua. Vector seeker: a
tool for finding vector potential. Sept. 2013.

[9] A. Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, amd and via cpus.
http://www.agner.org/optimize/instruction tables.pdf.

[10] instlatx64.atw.hu. x86, x64 instruction latency, memory latency and
cpuid dumps. http://instlatx64.atw.hu/.

[11] Intel. Architecture code analyzer. http://software.intel.com/en-
us/articles/intel-architecture-code-analyzer/.

[12] Y. Kashnikov, P. de Oliveira Castro, E. Oseret, and W. Jalby. Evaluating
Architecture and Compiler Design through Static Loop Analysis. In
High Performance Computing and Simulation (HPCS), 2013 Interna-
tional Conference on. IEEE Computer Society, 2013.

[13] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel. The vampir performance analysis tool-
set. In M. M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz,
editors, Parallel Tools Workshop, pages 139–155. Springer, 2008.

[14] S. Koliai, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and
W. Jalby. Quantifying performance bottleneck cost through differential
analysis. In ICS, pages 263–272, 2013.

[15] M. Malandain, N. Maheu, and V. Moureau. Optimization of the
deflated conjugate gradient algorithm for the solving of elliptic equations
on massively parallel machines. Journal of Computational Physics,
238(0):32 – 47, 2013.

[16] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel
cfd code for complex geometries. Comptes Rendus Mécanique, 339(2-
3):141–148, 2011.

[17] V. Moureau, P. Domingo, and L. Vervisch. From large-eddy simulation
to direct numerical simulation of a lean premixed swirl flame: Filtered
laminar flame-pdf modeling. Combustion and Flame, 158(7):1340 –
1357, 2011.

[18] V. Pillet, J. Labarta, T. Cortes, S. Girona, and D. D. D. Computadors.
Paraver: A tool to visualize and analyze parallel code. Technical report,
In WoTUG-18, 1995.

[19] A. Scemama, M. Caffarel, E. Oseret, and W. Jalby. Qmc=chem: A
quantum monte carlo program for large-scale simulations in chemistry
at the petascale level and beyond. In VECPAR, pages 118–127, 2012.

[20] A. Scemama, M. Caffarel, E. Oseret, and W. Jalby. Quantum monte
carlo for large chemical systems: Implementing efficient strategies for
petascale platforms and beyond. Journal of Computational Chemistry,
34(11):938–951, 2013.

[21] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and
S. Cranford. Openspeedshop: An open source infrastructure for parallel
performance analysis. Sci. Program., 16(2-3):105–121, Apr. 2008.

[22] S. S. Shende and A. D. Malony. The tau parallel performance system.
Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

[23] M. Team. Maqao tool. http://www.maqao.org.
[24] B. J. N. Wylie and W. Frings. Scalasca support for mpi+openmp parallel

applications on large-scale hpc systems based on intel xeon phi. In
Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, XSEDE ’13, pages
37:1–37:8, New York, NY, USA, 2013. ACM.

